Neural network functional models and algorithms for information conversion in order to create digital watermarks
DOI:
https://doi.org/10.3103/S073527271501001XKeywords:
data compression, neural network, image processing, steganography, digital watermarkingAbstract
There are considered functional neural network models and algorithms of information conversion that providing steganographic encoding of messages in the form of digital watermarks (DWM) into arbitrary objects—containers (digital images) and their subsequent decoding with minimal container distortion. The approach is based on theoretical justification of creating hetero- and autoassociative contraction mappings of the container fragments using direct propagation neural networks. The dependencies of the DWM quality indicators describing the container distortion level, as well as the probability of error at the DWM binary sequence decoding were obtained for model images in the form of random fields, as well as for real images.
References
BAKHRUSHIN, A.P. Spectral analysis of video frame on the basis of impulse functions to synchronize watermark embedding and searching processes. Bulletin of PNU, 2008, n.4, p.225-238, http://pnu.edu.ru/vestnik/pub/articles/1092/en/.
KONAKHOVICH, G.F.; PUZYRENKO, A.Y. Computer Steganography. Theory and Practice. Kyiv: MK-Press, 2006, 288 p. [in Russian].
BARSUKOV, V.S.; SHUVALOV, A.V. Another word about stenography, with is the most modern of ancient sciences. Spetsialnaya Tekhnika, 2004, n.2, p.51-65, http://www.ess.ru/sites/default/files/files/articles/2004/02/2004_02_04.pdf.
KHOROSHKO, V.A.; CHEKATKOV, A.A. Methods and Tools of Information Protection. Kyiv: Yunior, 2003, 504 p. [in Russian].
KAVITHA, V.; EASWARAKUMAR, K.S. Neural based steganography. Proc. of 8th Pacific Rim Int. Conf. on Artificial Intelligence, PRICAI 2004. Springer, 2004, v.3157, p.429-435, DOI: http://dx.doi.org/10.1007/978-3-540-28633-2_46.
CHANG, CHUAN-YU; SHEN, WEN-CHIH; WANG, HUNG-JEN. Using counter-propagation neural network for robust digital audio watermarking in DWT domain. Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics, SMC, 8–11 Oct. 2006, Taipei. IEEE, 2006, v.2, p.1214-1219, DOI: http://dx.doi.org/10.1109/ICSMC.2006.384880.
DRYUCHENKO, M.A.; SIROTA, A.A. Steganography data hiding based on neural network models and algorithms. Informatsionnye Tekhnologii, 2011, n.3, p.41-49.
SIROTA, A.A.; DRYUCHENKO, M.A.; MITROFANOVA, E.Y. Neural network technology of digital watermarking. Neirokompyutery: Razrabotka i Primeneniye, 2012, n.10, p.13-20, http://www.radiotec.ru/catalog.php?cat=jr7&art=11849.
SIROTA, A.A.; MITROFANOVA, E.Y. Convergence of weights of a two-layer linear neural network at construction of optimum linear estimations of casual vectors. Neirokompyutery: Razrabotka i Primeneniye, 2011, n.7, p.39-48, http://www.radiotec.ru/catalog.php?cat=jr7&art=8931.
DRYUCHENKO, M.A.; VORONOVA, E.V.; SIROTA, A.A. The restoration of the regression models of random processes and fields using neural networks. Vestnik VGU. Ser. Sistemnyi Analiz i Informatsionnyye Tekhnologii, 2009, n.1, p.109-119, http://www.vestnik.vsu.ru/program/view/view.asp?sec=analiz&year=2010&num=01&f_name=2010-01-19.
KIRSANOV, E.A.; SIROTA, A.A. Information Processing in Space Distributed Systems of Radio Monitoring: Statistical and Neural Network Approach. Moscow: Fizmatlit, 2012, 344 p. [in Russian].
OSOVSKIY, S. Neural Networks for Information Processing. Moscow: Finansy i Statistika, 2002, 344 p. [in Russian].
RAO, S.R. Linear Statistical Methods and their Application. Moscow: Nauka, 1968, 548 p. [in Russian].
The USC-SIPI Image Database, http://sipi.usc.edu/database/.
Kodak Lossless True Color Image Suite, http://r0k.us/graphics/kodak/.