Application of stochastic probing radio signals for the range-velocity ambiguity resolution in Doppler weather radars
DOI:
https://doi.org/10.3103/S0735272714120036Keywords:
weather radar, sequence of incoherent stochastic radio pulses, uncertainty relation, uncertainty function, area of the uniqueness domain, frequency wobbling, Doppler spectrum, extended targetAbstract
Methods of expanding unambiguous measurement band of the range and radial velocity have been discussed on the basis of the uncertainty relation. The uncertainty function was derived, and properties of a sequence of stochastic radio pulses were analyzed. The use of the sequence of stochastic radio pulses for probing was shown to allow the problem of unambiguous measurement of the range and the estimation of the first three moments of Doppler spectrum of extended targets to be solved under conditions of the presence of “dead areas”.
References
ATLAS, D. Advances in radar meteorology. Advances in Geophysics, Vol. 10. N.Y.: Academic Press, 1964 [ed. by H. E. Landsberg, J. Van Mieghem], p.317-468.
MELNIKOV, V.M. Data processing in Doppler WR. Zarubezhnaya Radioelektronika, 1993, n.4, p.35-42.
KHLOPOV, G.I.; KHOMENKO, S.I.; LINKOVA, A.M.; VOITOVYCH, O.A. Remote measurement of water drop sizes by means of double frequency sensing. Telecom. Radio Eng., 2012, v.71, n.4, p.337-348, DOI: http://dx.doi.org/10.1615/TelecomRadEng.v71.i4.40.
DOVIAK, R.J.; ZRNIC, D.S. Doppler Radar and Weather Observations, 2nd ed. New York: Dover Publications, 2006, http://www.sciencedirect.com/science/book/9780122214202.
Advanced Weather Radar Systems 1993-1997. Final Report. ESSEM COST Action 75 (2001), ISBN/ISSN: 978-92-828-6712-9, http://www.cost.eu/domains_actions/essem/Actions/75.
MOGYLA, A.A. Optimum reception of the stochastic probing signals under conditions of full a priori information. Telecom. Radio Eng., 2012, v.71, n.7, p.637-652, DOI: http://dx.doi.org/10.1615/TelecomRadEng.v71.i7.60.
MOGYLA, A.A. Detection of radar signals in conditions of full prior information when using stochastic signals for probing. Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2012, v.55, n.7, p.14-23, http://radio.kpi.ua/article/view/S0021347012070023; Radioelectron. Commun. Syst., 2012, v.55, n.7, p.299-306, http://radioelektronika.org/article/view/S0735272712070023, DOI: http://dx.doi.org/10.3103/S0735272712070023.
MOGYLA, A.A.; KHLOPOV, G.I. Decision statistic of detection of signals with unknown initial phase while using stochastic probing radio signals. Radiotekhnika (Kharkiv), 2013, n.173, p.171-182.
TORRES, SEBASTIAN M.; DUBEL, YANNICK F.; ZRNIC, DUSAN S. Design, implementation, and demonstration of a staggered PRT algorithm for the WSR-88D. J. Atmos. Oceanic Technol., 2004, v.21, n.9, p.1389-1399, DOI: http://dx.doi.org/10.1175/1520-0426(2004)021%3C1389:DIADOA%3E2.0.CO.
ZRNIC, D.S.; MAHAPATRA, P. Two methods of ambiguity resolution in pulse Doppler weather radars. IEEE Trans. Aerosp. Electron. Syst., July 1985, v.21, n.4, p.470-483, DOI: http://dx.doi.org/10.1109/TAES.1985.310635.
YANOVSKY, F.J.; LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V. Advanced algorithm of velocity measurement for modern meteorological radar. Proc. of 9th European Radar Conf., EuRAD, Oct. 31–Nov. 2, 2012, Amsterdam, Netherlands. IEEE, 2012, p.134-137, INSPEC: 13290356.
CHO, JOHN Y.N. Multi-PRI signal processing for the terminal Doppler weather radar. Part II: Range-velocity ambiguity mitigation. J. Atmos. Oceanic Technol., 2005, v.22, n.10, p.1507-1519, DOI: http://dx.doi.org/10.1175/JTECH1805.1.
VINOKUROV, V.I.; GENKIN, V.A.; KALENICHENKO, S.P.; KISELEV, A.Z.; SHCHERBAK, V.I. Maritime Radiolocation. Leningrad: Sudostroyenie, 1986 [in Russian, ed. by V. I. Vinokurov], 256 p.
SKOLNIK, M.I. Radar Handbook, Vol. 1, 3rd ed. New York: McGraw-Hill, 2008.
SHIRMAN, Y.D. Resolution and Compression of Signals. Moscow: Sov. Radio, 1974 [in Russian], 360 p.
EFREMOV, V.; VYLEGZHANIN, I.; VOVSHIN, B. The new generation of Russian C-band meteorological radars. Technical features, operation modes and algorithms. Proc. of Int. Radar Symp., IRS, 7-9 September 2011, Leipzig, Germany. IEEE, 2011, p.239-244, INSPEC: 12305093.
SEDLETSKY, R. Even polyphase Barker codes with large alphabet. Proc. of Int. Radar Symp., IRS, 7-9 September 2011, Leipzig, Germany. IEEE, 2011, p.571-576, INSPEC: 12305136.
LUKIN, K.A.; MOGYLA, A.A.; ALEKSANDROV, Y.A.; LUKINA, T.K. Performance evaluation of noise radar by the ambiguity function method. Telecom. Radio Eng., 2002, v.58, n.1–2, DOI: http://dx.doi.org/10.1615/TelecomRadEng.v58.i1-2.60.
MOGYLA, A.A.; LUKIN, K.A. Two-Parameter Representation of Random Signals: Models and Estimation of Statistical Characteristics. Saarbrucken: LAP Lambert Academic Publishing, 2012, ISBN 978-3-8383-9622-4 [in Russian], 200 p.
DRAGAN, Y.P. The Structure and Representation of Models of Stochastic Signals. Kyiv: Naukova Dumka, 1980 [in Russian], 381 p.
VAN TREES, H.L. Detection, Estimation, and Modulation Theory, Vol. 3: Radar-Sonar Signal Processing and Gaussian Signals in Noise. New York: Wiley-Interscience, 2001.
WOODWARD, P.M. Probability and Information Theory with Applications to Radar. Repr. of the ed. London, 1953 - Dedham, Mass. : Artech House, 1980.
SIEBERT, W. A radar detection philosophy. IRE Trans. Inf. Theory, Sept. 1956, v.2, n.3, p.204-221, DOI: http://dx.doi.org/10.1109/TIT.1956.1056805.
RIHACZEK, A.W. Radar resolution properties of pulse trains. Proc. IEEE, Feb. 1964, v.52, n.2, p.153-164, DOI: http://dx.doi.org/10.1109/PROC.1964.2804.
LEVIN, B.R. Theoretical Basics of Statistical Radio Engineering, 3rd ed. Moscow: Sov. Radio, 1989 [in Russian], 656 p.
RICE, J.R. The Approximation of Functions: Linear Theory, Vol. 1. Mass.: Addison-Wesley, 1964, ch.5.3, p.124-131.