Analysis of leakage reduction technique on FinFET based 7T and 8T SRAM cells

Authors

DOI:

https://doi.org/10.3103/S0735272714090015

Keywords:

FinFET, leakage current, leakage power, static random access memory, SRAM, self-controllable voltage level, SVL, upper SVL, lower SVL

Abstract

We propose a FinFET based 7T and 8T Static Random Access Memory (SRAM) cells. FinFETs also promise to improve challenging performance versus power tradeoffs. Designers can run the transistors more rapidly and use the similar amount of power, compared to the planar CMOS, or run them at the similar performance using less power. The aim of this paper is to reduce the leakage current and leakage power of FinFET based SRAM cells using Self-controllable Voltage Level (SVL) circuit Techniques in 45nm Technology. SVL circuit allows supply voltage for a maximum DC voltage to be applied on active load or can reduce the supplied DC voltage to a load in standby mode. This SVL circuit can reduce standby leakage power of SRAM cell with minimum problem in terms of chip area and speed. High leakage currents in submicron regimes are primary contributors to total power dissipation of bulk CMOS circuits as the threshold voltage Vth, channel length L and gate oxide thickness tox are scaled down. The leakage current in the SRAM cell increases due to reduction in channel length of the MOSFET. Two methods are used; one method in which the supply voltage is reduced and other method in which the ground potential is increased. The Proposed FinFET based 7T and 8T SRAM cells have been designed using Cadence Virtuoso Tool, all the simulation results has been generated by Cadence SPECTRE simulator at 45nm technology.

References

BOWMAN, K.A.; DUVALL, S.G.; MEINDL, J.D. Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE J. Solid-State Circuits, v.37, n.2, p.183-190, Feb. 2002, DOI: http://dx.doi.org/10.1109/4.982424.

BORKAR, SHEKHAR; KARNIK, TANAY; NARENDRA, SIVA; TSCHANZ, JIM; KESHAVARZI, ALI; DE, VIVEK. Parameter variations and impact on circuits and microarchitecture. 40th Annual Design Automation Conf., DAC, 2003, p.338-342, DOI: http://dx.doi.org/10.1145/775832.775920.

KARNIK, T.; DE, V.; BORKAR, S. Statistical design for variation tolerance: key to continued Moore’s law. Proc. of Int. Conf. on Integrated Circuit Design and Technology, ICICDT'04, 2004, p.175-176, DOI: http://dx.doi.org/10.1109/ICICDT.2004.1309939.

YU, BIN; WANG, HAIHONG; JOSHI, A.; XIANG, QI; IBOK, EFFIONG; LIN, MING-REN. 15 nm gate length planar CMOS transistor. Int. Tech. Dig. on Electron Devices Meeting, IEDM'01, 2–5 Dec. 2001, Washington, DC, USA. Washington, 2001, p.11.7.1-11.7.3, DOI: http://dx.doi.org/10.1109/IEDM.2001.979669.

HISAMOTO, D.; LEE, WEN-CHIN; KEDZIERSKI, J.; TAKEUCHI, H.; ASANO, K.; KUO, C.; ANDERSON, ERIK; KING, TSU-JAE; BOKOR, J.; HU, CHENMING. FinFET—a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices, v.47, n.12, p.2320-2325, Dec. 2000, DOI: http://dx.doi.org/10.1109/16.887014.

BALASUBRAMANIUM, J.Y.S. Design of sub-50 nm FinFET based low power SRAMs. Semicond. Sci. Technol., v.23, p. 13, 2008.

ZHANG, K.; BHATTACHARYA, U.; CHEN, ZHANPING; HAMZAOGLU, F.; MURRAY, D.; VALLEPALLI, N.; WANG, YIH; ZHENG, BO; BOHR, M. A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply. IEEE J. Solid-State Circuits, v.41, n.1, p.146-151, 2005, DOI: http://dx.doi.org/10.1109/JSSC.2005.859025.

POWELL, M.D.; YANG, S.-H.; FALSAFI, B.; ROY, K.; VIJAYKUMAR, T.N. Gated-Vdd: a circuit technique to reduce leakage in deep-submicron cache memories. 2000 Int. Symp. on Low Power Electronics and Design, ISLED’00, July 2000, p.90-95, DOI: http://dx.doi.org/10.1109/LPE.2000.155259.

AGARWAL, AMIT; LI, HAI; ROY, KAUSHIK. DRG-cache: a data retention gated-ground cache for low power. Proc. of 39th Design Automation Conf., June 2002, p.473-478, DOI: http://dx.doi.org/10.1109/DAC.2002.1012671.

GUINDI, RAFIK S.; NAJM, FARID N. Design techniques for gate-leakage reduction in CMOS circuits. Proc. of Fourth Int. Symp. on Quality Electronic Design, 24–26 March 2003, 2003, p.61-65, DOI: http://dx.doi.org/10.1109/ISQED.2003.1194710.

CHANG, L.; FRIED, D.M.; HERGENROTHER, J.; SLEIGHT, J.W.; DENNARD, R.H.; MONTOYE, R.K.; SEKARIC, LIDIJA; MCNAB, S.J.; TOPOL, A.W.; ADAMS, C.D.; GUARINI, K.W.; HAENSCH, W. Stable SRAM cell design for the 32 nm node and beyond. Digest of Tech. Papers of Symp. on VLSI Technology, 14–16 June 2005, Jun. 2005, p.128-129, DOI: http://dx.doi.org/10.1109/.2005.1469239.

ENOMOTO, T.; OKA, Y.; SHIKANO, H.; HARADA, T. A self-controllable voltage-level (SVL) circuit for low-power high-speed CMOS circuits. Proc. of 28th European Conf. on Solid-State Circuits, ESSCIRC 2002, 24–26 Sept. 2002, Florence, Italy, 2002, p.411-414.

KANDA, K.; SADAAKI, H.; SAKURAI T. 90% write power-saving SRAM using sense-amplifying memory cell. IEEE J. Solid-State Circuits, v.39, n.6, p.927-933, June 2004, DOI: http://dx.doi.org/10.1109/JSSC.2004.827793.

LAVANYA, S.; LISBIN J. Self controllable voltage level (SVL) for low power consumption. Proc. of IEEE Int. Conf. on Computational Intelligence & Computing Research, ICCIC, 18–20 Dec. 2012, Coimbatore, 2012, p.1-5, DOI: http://dx.doi.org/10.1109/ICCIC.2012.6510228.

Published

2014-09-08

Issue

Section

Research Articles