Calculation of scattering characteristics of aerial radar objects of resonant sizes based on iterative algorithm
DOI:
https://doi.org/10.3103/S0735272714060028Keywords:
range profile, integral equation, resonant object, scattering characteristicsAbstract
The paper considers a method for calculating the scattering characteristics of aerial radar objects of resonant sizes and complex shape, the surface of which can be assumed perfectly conducting. This method is based on applying an iterative algorithm for solving the magnetic field integral equation. The developed method allows obtaining stable results in the case of large-dimensional matrices of integral equation and provides for the elimination of internal resonances caused by the idealization of mathematical model. Peculiarities of the developed numerical algorithm are discussed. The calculation results of the effective cross-section of test object obtained by different methods were compared. In addition, the calculated range profiles of cruise missiles in the VHF band are presented.
References
GAUNAURD, G.C.; UBERALL, H.; NAGL, A. Complex-frequency poles and creeping-wave transients in electromagnetic-wave scattering. Proc. IEEE, v.71, n.1, p.172-174, Jan. 1983. DOI: http://dx.doi.org/10.1109/PROC.1983.12538.
KOSTYLEV, A.A. Identification of radar targets using ultrawideband signals: methods and applications. Zarubezhnaya Radioelektronika, n.4, p.75-102, 1984.
ULUISIK, C.; CAKIR, G.; CAKIR, M.; SEVGI, L. Radar cross section (RCS) modeling and simulation, Part 1: A tutorial review of definitions, strategies, and canonical examples. IEEE Antennas Propag. Magazine, v.50, n.1, p.115-126, Feb. 2008. DOI: http://dx.doi.org/10.1109/MAP.2008.4494511.
CAKIR, G.; CAKIR, M.; SEVGI, L. Radar cross section (RCS) modeling and simulation, Part 2: A novel FDTD-based RCS prediction virtual tool for the resonance regime. IEEE Antennas Propag. Magazine, v.50, n.2, p.81-94, Apr. 2008. DOI: http://dx.doi.org/10.1109/MAP.2008.4562259.
PETERSON, A.P.; RAY, S.L.; MITTRA, R. Computational Methods for Electromagnetics. Wiley-IEEE Press, 1997.
VASIL’EV, E.N. Excitation of Bodies of Revolution. Moscow: Radio i Svyaz’, 1987 [in Russian], 272 p.
L’VOVA, L.A. Radar Signature of Aircraft. Snezhinsk: RFYaTs-VNIITF, 2003 [in Russian], 232 p.
RIUS, J.M.; UBEDA, E.; PARRON, J. On the testing of the magnetic field integral equation with RWG basis functions in method of moments. IEEE Trans. Antennas Propag., v.49, n.11, p.1550-1553, Nov. 2001. DOI: http://dx.doi.org/10.1109/8.964090.
GUREL, L.; ERGUL, O. Singularity of the magnetic field integral equation and its extraction. IEEE Antennas Wireless Propag. Lett., v.4, p.229-232, 2005. DOI: http://dx.doi.org/10.1109/LAWP.2005.851103.
ERGUL, Ozgur; GUREL, LEVENT. Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations. IEEE Trans. Antennas Propag., v.55, n.4, p.1103-1110, Apr. 2007. DOI: http://dx.doi.org/10.1109/TAP.2007.893393.
EIBERT, T.F. Some scattering results computed by surface-integral-equation and hybrid finite-element – boundary-integral techniques, accelerated by the multilevel fast multipole method. IEEE Antennas Propag. Magazine, v.49, n.2, p.61-69, Apr. 2007. DOI: http://dx.doi.org/10.1109/MAP.2007.376638.
GIBSON, W.C. The Method of Moments in Electromagnetics. Boca–Raton–London–New York: Chapman & Hall/Taylor & Francis Group, 2008. DOI: http://dx.doi.org/10.1080/00107510903073302.
YLA-OIJALA, PASI; TASKINEN, MATTI; JARVENPAA, SEPPO. Advanced surface integral equation methods in computational electromagnetics. Proc. of Int. Conf. on Electromagnetics in Advanced Applications, ICEAA’09, 14–18 Sept. 2009, Torino, Italy. Torino: COREP, 2009, p.369-372. DOI: http://dx.doi.org/10.1109/ICEAA.2009.5297415.
SUKHAREVSKY, I.O.; ZALEVSKY, G.S.; NECHITAYLO, S.V.; SUKHAREVSKY, O.I. Electromagnetic wave scattering by a circular PEC plate of finite thickness. Elektomagnitnye Volny i Elektronnye Sistemy, v.15, n.2, p.42-47, 2010.
SUKHAREVSKY, O.I.; ZALEVSKY, G.S.; NECHITAYLO, S.V.; SUKHAREVSKY, I.O. Simulation of scattering characteristics of aerial resonant-size objects in the VHF band. Radioelectron. Commun. Syst., v.53, n.4, p.213-218, 2010, http://radioelektronika.org/article/view/S0735272710040060, DOI: http://dx.doi.org/10.3103/S0735272710040060.
UBEDA, E.; TAMAYO, J.M.; RIUS, J.M. Taylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects. PIER, v.119, p.85-105, 2011. DOI: http://dx.doi.org/10.2528/PIER11051715.
YAN, Su; JIN, JIAN-MING; NIE, ZAIPING. Improving the accuracy of the second-kind Fredholm integral equations by using the Buffa-Christiansen functions. IEEE Trans. Antennas Propag., v.59, n.4, p.1299-1310, Apr. 2011. DOI: http://dx.doi.org/10.1109/TAP.2011.2109364.
UBEDA, EDUARD; TAMAYO, J.M.; RIUS, J.M.; HELDRING, A. Stable discretization of the electric-magnetic field integral equation with the Taylor-orthogonal basis functions. IEEE Trans. Antennas Propag., v.61, n.3, p.1484-1490, Mar. 2013. DOI: http://dx.doi.org/10.1109/TAP.2012.2227925.
ZALEVSKY, G.S.; SUKHAREVSKY, O.I. Secondary emission characteristics of resonant perfectly conducting objects of simple shape. Proc. of IX Int. Conf. on Antenna Theory and Techniques, ICATT’13, 16–20 Sept. 2013, Odessa, Ukraine. Odessa, 2013, p.145-147. DOI: http://dx.doi.org/10.1109/ICATT.2013.6650706.
FEKO Comprehensive Electromagnetic Solutions. The Complete Antenna Design and Placement Solution, http://www.feko.info.
KNOTT, E.F.; SHAEFFER, J.F.; TULEY, M.T. Radar Cross Section, 2nd ed. Boston–London: Artech House, 1993, 611 p.
SHIRMAN, Y.D.; Et AL. (ed.), Computer Simulation of Aerial Target Radar Scattering Recognition, Detection and Tracking. Norwood, M.A.: Artech House, 2002, 382 p.
UFIMTSEV, P.Y. The Theory of Diffraction Edge Waves in Electrodynamics. Moscow: Binom, 2007 [in Russian], 366 p.
SUKHAREVSKY, O.I.; VASILETS, V.A.; KUKOBKO, S.V.; ET AL. Scattering of Electromagnetic Waves by Aerial and Ground-Based Radar Objects. Kharkiv: KhUPS, 2009 [in Russian, ed. by O.I. Sukharevsky], 468 p.
SOBOL’, I.M. Multivariate Quadratic Formulas and Haara Functions. Moscow: Nauka, 1969 [in Russian], 288 p.
Aviation Encyclopaedia “Sky Corner”. AGM-86C/D-CALCM, http://www.airwar.ru/weapon/kr/agm86.html [in Russian].
Taurus KEPD 350. The modular stand-off missile for precision strike against HDBT, http://www.taurus-systems.de.