Loop plasma and metallic antennas for mobile entities
DOI:
https://doi.org/10.3103/S0735272714030030Keywords:
plasma antennaAbstract
A method of estimating the specific conductivity and dielectric relative dielectric permittivity of plasma antennas with mercury admixture has been proposed and investigated in two different microwave ranges. Based on the obtained data of specific conductivity and relative dielectric permittivity the radiotechnical parameters (VSWR and the efficiency) were computed via simulation and calculation of antennas in the FEKO software environment using the integral equation method and the method of moments with or without due regard for the impact of mercury admixture. For comparison plasma and metallic antennas the characteristics of similar metallic antennas were also considered. A significant difference of the above characteristics was noted. The comparison of the calculation results of VSWR of plasma antennas with experimental data revealed their acceptable agreement. This is the evidence of an adequate approach to specifying the initial data in terms of the plasma parameters and the correct computer simulation of plasma antennas in the microwave range. The radiotechnical characteristics of an L-shaped loop plasma antenna bent for the purpose of reducing the aerodynamic resistance in case of mounting antenna at mobile entities were also investigated. It is recommended to reduce the amount of mercury introduced into plasma antennas for improving the ecological situation. The method proposed can be used for taking into account the impact of other admixtures introduced into plasma antennas.References
JENN, D.C. Plasma Antennas: Survey of Techniques and the Current State of the Art. Naval Postgraduate School, Prepared for SPAWAR PMW 189. San Diego, CA, USA, 2003.
NORRIS, ELWOOD G.; ANDERSON, TED; ALEXEFF, IGOR. US Patent No. 6,369,763, 9 April 2002.
ALEXEFF, IGOR; ANDERSON, TED; NORRIS, E.G. US Patent No. 6,876,330 B2, 5 April 2005.
HETTINGER, J. US Patent No. 1,309,031, 8 July 1919.
US Patent No. 1,790,153, 27 January 1931.
ALEXEFF, I. The plasma antenna – now you see it, now you don’t. Theses of XI Kharkiv Young Sci. Conf. on Radiophysics, Electronics, Photonics and Biophysics, Kharkiv, Ukraine. Kharkiv 2011.
MORROW, I.L.; HALL, P.S.; DAHELE, J.S. The contribution of J.R. James to dielectric rod and other novel antennas. Proc. of Second European Conf. on Antennas and Propagation, EuCAP, 11–16 Nov. 2007, Edinburg, UK. Edinburg, 2007, p.1-4.
BORG, G.G.; HARRIS, J.H.; MARTIN, N.M.; THORNCRAFT, D.; MILLIKEN, R.; MILJAK, D.G.; KWAN, B.; NG, T.; KIRCHER, J. Plasmas as antennas: Theory, experiment, and applications. Phys. Plasmas, v.7, n.5, p.2198, May 2000. DOI: http://dx.doi.org/10.1063/1.874041.
VECCHIONI, E.; CERRI, G.; RUSSO, P.; PRIMIANI, V.M. Experimental and theoretical investigation on plasma antenna. Proc. of XXIX General Assembly of the Int. Union of Radio Science, Chicago, Illinois, USA 2008. Chicago, 2008, p. 222-1–222-4.
RAJNEESH, K.; DHIRAJ, B. Wireless communication capability of a reconfigurable plasma antenna. J. Appl. Phys., v.109, n.6, p.063303, 2011. DOI: http://dx.doi.org/10.1063/1.3564937.
GUTMAN, A.L.; ALMALIEV, A.N.; KATSNELSON, B.G.; SHELAEV, M.A. Conductor like plasma antenna. Proc. of XXVI General Assembly of URSI, Toronto, Cananda. Toronto, 1999.
MINAEV, I.M.; RUKHADZE, A.A.; SERGEICHEV, K.F.; TREFILOV, F.Y. Active plasma HF-antenna matched with the source of oscillations. Kratkiye Soobscheniya po Fizike FIAN, n.12, p.34, 2005.
ISTOMIN, E.N.; KARFIDOV, D.M.; MINAEV, I.M.; RUKHADZE, A.A.; TARAKANOV, V.P.; SERGEICHEV, K.F.; TREFILOV, A.Y. Plasma asymmetric dipole antenna excited by a surface wave. Plasma Phys. Reports, v.32, n.5, p.388-400, 2006. DOI: http://dx.doi.org/10.1134/S1063780X06050047.
GUSSEIN-ZADE, N.G.; MINAEV, I.M.; RUKHADZE, K.Z. Quarter-wave dipole plasma receiving antenna. Proc. of XXXVII Int. Conf. on Plasma Physics and Controlled Fusion, 8–12 February 2010, Zvenigorod, Russia, 2010.
DEMENT’EVA, O.B. Low-frequency plasma antenna. Proc. of XXXVIII Int. Conf. on Plasma Physics and Controlled Fusion, 14–18 February 2011, Zvenigorod, Russia, 2011.
OVSYANNIKOV, V.V.; LITVINOV, A.G.; MALANCHUK, A.M. USSR Inventor’s Certificate no. 3566850, 24 March 1983.
OVSYANIKOV, V.V. Broadband microwave emitter on a basis of gas discharge plasma. Radiofiz. Radioastron., v.6, n.3, p.261-267, 2001.
BEZPALOV, ANTON Y.; GNATUSHENKO, VOLODYMYR V.; OVSYANIKOV, VIKTOR V.; OVSYANIKOV, VOLODYMYR V.; REUTA, OLEXANDR V.; SAFONOV, VALERII V.; SYDORENKO, OLGA A. Research of antennas made of gas plasma on microwave band. Proc. of 4th Europ. Conf. on Antennas and Propagation, EuCAP’2010, 12–16 April 2010, Barcelona, Spain. Barcelona, 2010, p.1-4.
ANDERSON, T. Plasma Antennas. Artech House, 2011. 203 p.
ALEKSANDROV, A.F.; BOGDANKEVICH, L.S.; RUKHADZE, A.A. Introduction to the Electrodynamics of Plasma: Textbook for Higher Education Institutions. Moscow: Vyssh. Shkola, 1978 [in Russian, ed. by A. A. Rukhadze]. 407 p.
ALFVEN, H.; FALTHAMMAR, C.-G. Cosmical Electrodynamics. Fundamental Principles, 2nd ed. Oxford: Clarendon Press, 1963.
PALAMARENKO, S.I. Luminescent lamps and their characteristics. Radiolyubitel-Elektrik, n.1, p.26, 2001.
MILENIN, V.M.; TIMOFEEV, N.A. Plasma of Gas-Discharge Low-Pressure Light Sources. Leningrad: Izd-vo Leningradskogo Universiteta, 1991 [in Russian]. 240 p.
GINZBURG, V.L. Propagation of Electromagnetic Waves in Plasma. Moscow, 1960 [in Russian]. 552 p.
DUBROVSKII, I.M.; EGOROV, B.V.; RYABOSHAPKA, K.P. Handbook of Physics. Kyiv: Naukova Dumka, 1986 [in Russian]. 560 p.
NIKOL’SKII, V.V. Electrodynamics and Radio Wave Propagation. Moscow: Nauka, 1973 [in Russian]. 607 p.
BANKOV, S.E.; KURUSHIN, A.A. Calculation of Radiating Structures Using FEKO. Moscow: CJSC NPP RODNIK, 2008 [in Russian]. 246 p.