Amplification of optical phonons in narrow band semiconductors at low temperatures

Authors

DOI:

https://doi.org/10.3103/S0735272714020022

Keywords:

optical phonon, semiconductor structure, kinematic approach, electron gas, quantum well

Abstract

Terahertz radiation generation by using the natural modes of solid body has been investigated. The numerical simulation of instability of terahertz range optical phonons in semiconductor structures with quantum wells during the drift of two-dimensional electron gas was performed. The main obstacle of implementing the specified instability is the heating of electron gas during its drift. That is why the investigations were performed for low temperatures T < 77 K, and the electron gas was assumed to be degenerate. Due to the existing closed cycle microcoolers and also the feedback implementation, it is possible to experimentally observe the generation of optical phonons. The numerical simulation involved the use of both kinematic and hydrodynamic approaches. It has been shown that the kinetic approach is more adequate, while the hydrodynamic one leads to overestimated values of instability increments.

References

SIEGEL, P.H. Terahertz technology. IEEE Trans. Microwave Theory Tech., v.50, n.3, p.910-928, 2002. doi: http://dx.doi.org/10.1109/22.989974">http://dx.doi.org/10.1109/22.989974.

KOHLER, RUDEGER; TREDICUCCI, ALESSANDRO; BELTRAM, FABIO; BEERE, HARVEY E.; LINFIELD, EDMUND H.; DAVIES, A. GILES; RITCHIE, DAVID A.; IOTTI, RITA C.; ROSSI, FAUSTO. Terahertz semiconductor-heterostructure laser. Nature, v.417, p.156-162, 2002. doi: http://dx.doi.org/10.1038/417156a">http://dx.doi.org/10.1038/417156a.

YU, P.Y.; CARDONA, M. Fundamentals of Semiconductors. Physics and Materials Properties. New York: Springer, 2010.

LIANG, W.; TSEN, K.T.; SANKEY, OTTO F.; KOMIRENKO, S.M.; KIM, K.W.; KOCHELAP, V.A.; WU, MENG-CHYI; HO, CHONG-LONG; HO, WEN-JENG; MORKOC, H. Observation of optical phonon instability induced by drifting electrons in semiconductor nanostructures, Appl. Phys. Lett., v.82, n.12, p.1968-1970, 2003. doi: http://dx.doi.org/10.1063/1.1563730">http://dx.doi.org/10.1063/1.1563730.

FEDORCHENKO, A.M. AND KOTSARENKO, N.Y. Absolute and Convective Instability in Plasma and Solid Bodies. Moscow: Nauka, 1981 [in Russian].

KOSHEVAYA, S.V.; GRIMALSKY, V.V.; GARCIA-B., A.; DIAZ-A., M.F. Amplification of hypersonic by GaAs crystals. Ukr. J. Phys., v.51, n.6, p.593-597, 2006, http://ujp.bitp.kiev.ua/files/journals/51/6/510610p.pdf">http://ujp.bitp.kiev.ua/files/journals/51/6/510610p.pdf.

KOSHEVAYA, S.V.; EMELYANENKOV, B.N.; GASSANOV, L.G.; OMELYANENKO, M.Y. Physical foundations of integrated circuits of a MM range design. Izv. Vyssh. Uchebn. Zaved., Radioelektron., v.25, n.10, p.5-14, 1982 [in Russian]. Radioelectron. Commun. Syst., v.25, n.10, p.1-10, 1982.

DATTA, S. Electronic Transport in Mesoscopic Systems. Cambidge: CUP, 1999.

KVASNIKOV, I.A. Statistical Physics, v.2. Moscow: Editorial URSS, 2002 [in Russian].

FERRY, D.K.; GOODNICK, S.M.; BIRD, J. Transport in Nanostructures. Cambridge: CUP, 2009.

ALEKSANDROV, A.F.; BOGDANKEVICH, L.S.; RUKHADZE, A.A. Principles of Plasma Electrodynamics. Moscow: Vyssh. Shkola, 1990 [in Russian].

KONDRAT’EV, A.S. AND KUCHMA, A.E. Lectures on the Theory of Quantum Liquids. Leningrad: Izdat. LGU, 1989 [in Russian].

LIFSHITS, E.M. AND PITAEVSKII, L.P. Physical Kinetics. Moscow: Nauka, 1979 [in Russian].

POZHELA, Y. Physics of Fast Transistors. Vilnius: Mokslas, 1989 [in Russian].

KOSSEVICH, A. The Crystal Lattice. Phonons, Solitons, Dislocations. Berlin: Wiley-VCH, 1999.

SHIK, A.Y.; BAKUEVA, L.G.; MUSIKHIN, S.F.; RYKOV, S.A. Physics of Low-Dimensional Systems. St. Petersburg: Nauka, 2001 [in Russian].

Published

2014-02-16

Issue

Section

Research Articles