BER performance enhancement for secure wireless communication systems based on DCSK-MIMO techniques under Rayleigh fading channel
DOI:
https://doi.org/10.3103/S0735272713100038Keywords:
DCSK, chaotic techniques, MIMO, Rayleigh fadingAbstract
There has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide very low bit error rates (BER) along with information security. As more and more information is transacted over wireless media, there has been increasing criminal activity directed against such systems. This paper investigates the feasibility of using chaotic communications over Multiple-Input-Multiple-Output (MIMO) channels. We have studied the performance of differential chaos shift keying (DCSK) with 2×2 Alamouti scheme and 2×1 Alamouti scheme for different chaotic maps over additive white Gaussian noise (AWGN) and channels disturbed by Rayleigh fading. Both the inherently wideband DCSK modulation and the space-time block code (STBC) are techniques that can mitigate the effect of multipath fading. The use of these schemes allows us to enhance security without degrading the BER performance for Rayleigh fading channels. We have employed an exact method to analyze the performances of DCSK communication system over fading channel. Our simulations indicate that the combination of the STC and tent map provides the best BER performance in addition to security when compared to the choice of other maps. Hence, this study shows that the use of these schemes can allow the user to enhance security without degrading the BER performance while communicating over these channels.
References
FREY, D.R. Chaotic digital encoding: An approach to secure communication. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process., v.40, n.10, p.660-666, 1993. doi: http://dx.doi.org/10.1109/82.246168">10.1109/82.246168.
ITOH, M.; MURAKAMI, H.; CHUA, L.O. Secure communication systems via Yamakawa’s chaotic chips and Chua’s circuits. Proc. of IEEE Third World Congress on Computational Intelligence “Fuzzy Systems,” 26–29 Jun. 1994, Orlando, FL. Orlando, 1994, v.2, p.1293-1296. doi: http://dx.doi.org/10.1109/FUZZY.1994.343908">10.1109/FUZZY.1994.343908.
ZHOU, HONG; LING, XIE-TING; YU, JUN. Secure communication via one-dimensional chaotic inverse systems. Proc. of IEEE Int. Symp. on Circuits and Systems, ISCAS’97, 9–12 Jun. 1997. Hong Kong, 1997, v.2, p.1029-1032. doi : http://dx.doi.org/10.1109/ISCAS.1997.621911">10.1109/ISCAS.1997.621911.
KADDOUM, G.; VU, MAI; GAGNON, FRANCOIS. Performance analysis of differential chaotic shift keying communications in MIMO systems. Proc. of IEEE Int. Symp. on Circuits and Systems, ISCAS, 15–18 May 2011, Rio de Janeiro, Brazil. Rio de Janeiro, 2011, p.1580-1583. doi: http://dx.doi.org/10.1109/ISCAS.2011.5937879">10.1109/ISCAS.2011.5937879.
MA, HUANFEI AND KAAN, HAIBIN. Space-time coding and processing with differential chaos shift keying scheme. Proc. of IEEE Int. Conf. on Communications, ICC’09, 14–18 June 2009, Dresden, Germany. Dresden, 2009, p.1-5. doi: http://dx.doi.org/10.1109/ICC.2009.5199469">10.1109/ICC.2009.5199469.
LAU, F.C.M.; TSE, C.K.; MING, YE.; HAU, S.F. Coexistence of chaos-based and conventional digital communication systems of equal bit rate. IEEE Trans. Circuits Syst., v.51, n.2, p.391-408, 2004. doi: http://dx.doi.org/10.1109/TCSI.2003.822398">10.1109/TCSI.2003.822398.
BEN FARAH, M.A.; KACHOURI, A.; SAMET, M. Design of secure digital communication systems using DCSK chaotic modulation. Proc. of IEEE Int. Conf. on Design and Test of Integrated Systems in Nanoscale Technology, DTIS, 5–7 Sept. 2006, Tunis. 2006, p.200-204. doi: http://dx.doi.org/10.1109/DTIS.2006.1708656">10.1109/DTIS.2006.1708656.
LAU, YUU-SENG AND HUSSAIN, Z.M. A new approach in chaos shift keying for secure communication. Proc. of Third IEEE Int. Conf. on Information Technology and Applications, ICITA 2005, 4–7 July 2005. 2005, v.2, p.630-633. doi: http://dx.doi.org/10.1109/ICITA.2005.30">10.1109/ICITA.2005.30.
LEE, JAEJIN; LEE, CHUNGYONG; WILLIAMS, D.B. Secure communication using chaos. Proc. of IEEE Global Telecommunication Conf. GLOBECOM’95, 14–16 Nov. 1995. 1995, v.2, p.1183-1187. doi: http://dx.doi.org/10.1109/GLOCOM.1995.502590">10.1109/GLOCOM.1995.502590.
LI, ZHINGGUO; LI, KUN; WEN, CHANGYUN; SOH, YENG CHAI. A new chaotic communication system. IEEE Trans. Commun., v.51, n.8, p.1306-1312, 2003. doi: http://dx.doi.org/10.1109/TCOMM.2003.815058">10.1109/TCOMM.2003.815058.
TANG, GUOPING; LIAO, XIAOFENG; XIAO, DI; LI, CHUANDONG. A secure communication scheme based on symbolic dynamics. Proc. of IEEE Int. Conf. on Communications, Circuits and Systems, ICCCAS 2004, 27–29 June 2004. 2004, v.1, p.13-17. doi: http://dx.doi.org/10.1109/ICCCAS.2004.1345929">10.1109/ICCCAS.2004.1345929.
LAU, YUU-SENG; LIN, KEVIN H.; HUSSAIN, Z.M. Space-time encoded secure chaos communications with transmit beamforming. Proc. of IEEE Region 10, TENCON, 21–24 Nov. 2005, Melbourne, Qld. 2005, p.1-5. doi: http://dx.doi.org/10.1109/TENCON.2005.301120">10.1109/TENCON.2005.301120.
KADDOUM, G.; VU, MAI; GAGNON, F. On the performance of chaos shift keying in MIMO communications systems. Proc. of IEEE Wireless Communication and Networking Conf. WCNC, 28–31 March 2011, Cancun, Quintana Roo. Cancun, 2011, p.1432-1437. doi: http://dx.doi.org/10.1109/WCNC.2011.5779370">10.1109/WCNC.2011.5779370.
MA, HUANFEI AND KAN, HAIBIN. Space-time coding and processing with differential chaos shift keying scheme. Proc. of IEEE Int. Conf. on Communications, ICC’09, 14–18 June 2009, Dresden, Germany. Dresden, 2009, p.1-5. doi: http://dx.doi.org/10.1109/ICC.2009.5199469">10.1109/ICC.2009.5199469.
KADDOUM, GEORGES; GAGNON, FRANCOIS; CHARGE, PASCAL; ROVIRAS, DANIEL. A generalized BER prediction method for differential chaos shift keying system through different communication channels. Wireless Personal Commun., v.64, n.2, p.425-437, 2012. doi: http://dx.doi.org/10.1007/s11277-010-0207-1">10.1007/s11277-010-0207-1.
KADDOUM, G.; CHARGE, P.; ROVIRAS, D.; FOURNIER-PRUNARET, D. A methodology for bit error rate prediction in chaos-based communication systems. Circuits, Syst. Signal Process., v.28, n.6, p.925-944, 2009. doi: http://dx.doi.org/10.1007/s00034-009-9124-5">10.1007/s00034-009-9124-5.
TAM, W.M.; LAU, F.C.M.; TSE, C.K.; LAWRANCE, A.J. Exact analytical bit error rates for multiple access chaos-based communication systems. IEEE Trans. Circuits Syst., v.51, n.9, p.473-481, Sept. 2004. doi: http://dx.doi.org/10.1109/TCSII.2004.832773">10.1109/TCSII.2004.832773.
DORNBUSCH, A. AND DE GYVEZ, J.P. Chaotic generation of PN sequences: A VLSI implementation. Proc. of IEEE Int. Symp. on Circuits and Systems, ISCAS’99, 1999, Orlando, FL. 1999, v.5, p.454-457. doi: http://dx.doi.org/10.1109/ISCAS.1999.777607">10.1109/ISCAS.1999.777607.
AWAD, ABIR; EL ASSAD, SAFWAN; QIANXUE, WANG; VLADEANU, CALIN; BAKHACHE, BASSEM. Comparative study of 1-D chaotic generators for digital data encryption. IAENG Int. J. Computer Sci., v.35, n.4, p.1, Dec. 2008.
STAVROULAKIS, P. Chaos Applications in Telecommunications. Taylor & Francis Group, 2006.
ZHOU, ZHIBO; ZHOU, TONG; WANG, JINXIANG. Exact BER analysis of differential chaos shift keying communication system in fading channels. Proc. of 4th IEEE Int. Conf. on Wireless Communication, Networking and Mobile Computing, WiCOM’08, 12–14 Oct. 2008, Dalian, China. Dalian, 2008, p.1-4. doi: http://dx.doi.org/10.1109/WiCom.2008.516">10.1109/WiCom.2008.516.