Secondary information processing in angular-measuring systems on a basis of invariants
DOI:
https://doi.org/10.3103/S073527271309001XKeywords:
multistatic goniometric system, secondary information processing, invariant, decentralization of processing of measurements, identification of bearings, identification of motion modelAbstract
On a basis of complete set of independent invariants problems of bearing angle match and identification of targets movement model are solved applying to multi-position angular-measuring system. It is shown application of invariants of passive location provides maximal possible decentralization of measurements processing.
References
BULYCHEV, YU.G. AND MANIN, A.P. Mathematical Aspects for Definition of Aircraft Movement. Moscow: Mashinostroyeniye, 2000. 256 p. [in Russian].
BULYCHEV, YU.G.; BABUSHKIN, I.A.; BORODIN, L.I.; GOLOVSKOI, V.A.; MOZOL’, A.A. Bearing identification in goniometric systems that is based on the decentralization principle. J. Commun. Technol. Electronics, v.54, n.5, p.549-556, 2009. doi: http://dx.doi.org/10.1134/S1064226909050076">10.1134/S1064226909050076.
ZHDANIUK, B.F. Basic Principles of Statistical Processing of Trajectory Modification. Moscow: Sov. Radio, 1978. 384 p. [in Russian].
LAWSON, CH.L. AND HANSON, R.J. Solving Least Squares Problems. New Jersey: Prentice-Hall, 1974. 232 p.
TIKHONOV, A.N. AND ARSENIN, V.YA. Method of Solution of Ill-Conditioned Problem. Moscow: Nauka, 1986. 288 p. [in Russian].
BULYCHEV, V.YU.; BULYCHEV, YU.G.; MOZOL’, A.A.; POMYSOV, A.S.; SEMENOV, I.G. An invariant plane method for estimating systematic elevation-angle errors of measurements. J. Commun. Technol. Electronics, v.56, n.8, p.957-964, 2011. doi: http://dx.doi.org/10.1134/S106422691108002X">10.1134/S106422691108002X.
CHERNIAK, V.S. Multiposition Radiolocation. Moscow: Radio i Svyaz’, 1993. 416 p. [in Russian].
BULYCHEV, YU.G.; BURLAY, I.V.; MANIN, A.P.; KRITSKIY, YA.V. Variation-selective method of estimation of object location coordinate in angular measuring system. Izv. RAN. Teoriya i Sistemy Upravleniya, v.40, n.4, p.161-167, 2001.