Solid-state microwave switches: Circuitry, manufacturing technologies and development trends. Review (Part 2)
DOI:
https://doi.org/10.3103/S0735272713050014Keywords:
GaN, microwave switch, single-pole single-throw, SPST, monolithic microwave integrated circuit, MMIC, HEMT, gallium nitrideAbstract
This paper presents an overview of the process and design capabilities of state-of-the-art in the field of microwave solid state switches. The paper describes types of solid state switches, switch specifications, a review of technological advances in this area. The overview results indicate that AlGaN/GaN MMICs including solid state switches are realizable.
References
- HIEDA, M.; NAKAHARA, K.; KURUSU, H.; IYAMA, Y.; URASAKI, S. High-isolation series-shunt FET SPDT switch with a capacitor canceling FET parasitic inductance. IEEE Trans. Microwave Theory Tech., v.49, n.12, p.2453-2458, Dec. 2001.
- TORRES, J.A. AND FREIRE, J.C. Monolithic transistors SPST switch for L-band. IEEE Trans. Microwave Theory Tech., v.50, n.1, p.51-56, Jan. 2002.
- TSAI, Z.-M.; JIANG, Y.-S.; LEE, J.; LIN, K.-Y.; WANG, H. Analysis and design of bandpass single-pole–double-throw FET filter-integrated switches. IEEE Trans. Microwave Theory Tech., v.55, n.8, p.1601-1610, Aug. 2007.
- LEE, J.; LAI, R.-B.; CHEN, C.-C.; LIN, C.-S.; LIN, K.-Y.; CHIONG, C.-C.; WANG, H. Low insertion-loss single-pole–double-throw reduced-size quarter-wavelength HEMT bandpass filter integrated switches. IEEE Trans. Microwave Theory Tech., v.56, n.12, p.3028-3038, Dec. 2008.
- JIN, Y. AND NGUYEN, C. Ultra-compact high-linearity high-power fully integrated DC–20-GHz 0.18-um CMOS T/R switch. IEEE Trans. Microwave Theory Tech., v.55, n.1, p.30-36, Jan. 2007.
- PAO, K.-H.; HSU, C.-Y.; CHUANG, H.-R.; CHEN, C.-Y. Design of a 3–10 GHz UWB CMOS T/R Switch. Microw. Opt. Technol. Lett., v.50, n.2, p.457-460, Feb. 2008.
- TANAKA, S.; HORIUCHI, S.; KIMURA, T.; ATSUMI, Y. Design and fabrication of multiband p-i-n diode switches with ladder circuits. IEEE Trans. Microwave Theory Tech., v.54, n.4, p.1561-1568, April 2006.
- DEVLIN, L. The design of integrated switches and phase shifters. Proc. of the IEE Tutorial Colloquium on “Design of RFICs and MMICs”, 24th November 1999, pp. 2/1-14.
- AHN, M.; LEE, C.-H.; KIM, B.S.; LASKAR, J. A high-power CMOS switch using a novel adaptive voltage swing distribution method in multistack FETs. IEEE Trans. Microwave Theory Tech., v.56, n.4, p.849-858, April 2008.
- HUANG, F.-J. AND O, K. A 0.5-um CMOS T/R switch for 900-MHz wireless applications. IEEE J. Solid-State Circuits, v.36, n.3, p.486-492, Mar. 2001.
- PARK, P.; SHIN, D.H.; YUE, C.P. High-linearity CMOS T/R switch design above 20 GHz using asymmetrical topology and AC-floating bias. IEEE Trans. Microwave Theory Tech., v.57, n.4, p.948-956, Apr. 2009.
- XU, H. AND O, K.K. A 31.3-dBm bulk CMOS T/R switch using stacked transistors with sub-design-rule channel length in floated p-wells. IEEE J. Solid-State Circuits, v.42, n.11, p.2528-2534, Nov. 2007.
- WANG, J.-H.; HSIEH, H.-H.; LU, L.-H. A 5.2-GHz CMOS T/R switch for ultra-low-voltage operations. IEEE Trans. Microwave Theory Tech., v.56, n.8, p.1774-1782, Aug. 2008.
- AHN, M.; KIM, H.-W.; LEE, C.-H.; LASKAR, J. A 1.8-GHz 33-dBm P0.1-dB CMOS T/R switch using stacked FETs with feed-forward capacitors in a floated well structure. IEEE Trans. Microwave Theory Tech., v.57, n.11, p.2661-2670, Nov. 2009.
- LI, Q.; ZHANG, Y.P.; YEO, K.S.; LIM, W.M. 16.6- and 28-GHz fully integrated CMOS RF switches with improved body floating. IEEE Trans. Microwave Theory Tech., v.56, n.2, p.339-345, Feb. 2008.
- MIN, B.-W. AND REBEIZ, G.M. Ka-band low-loss and high-isolation switch design in 0.13-um CMOS. IEEE Trans. Microwave Theory Tech., v.56, n.6, p.1364-1371, June 2008.
- UZUNKOL, M. AND REBEIZ, G.M. A low-loss 50–70 GHz SPDT switch in 90 nm CMOS. IEEE J. Solid-State Circuits, v.45, n.10, p.2003-2007, Oct. 2010.
- LI, Q. AND ZHANG, Y.P. CMOS T/R switch design: towards ultra-wideband and higher frequency. IEEE J. Solid-State Circuits, v.42, n.3, p.563-570, Mar. 2007.
- MIZUTANI, H.; IWATA, N.; TAKAYAMA, Y.; HONJO, K. Design considerations for traveling-wave single-pole multithrow MMIC switch using fully distributed FET. IEEE Trans. Microwave Theory Tech., v.55, n.4, p.664-671, Apr. 2007.
- WEIGAND, C. An ASIC driver for GaAs FET control components. Appl. Microwave Wireless, TA003, p.42-48, Dec. 2000, http://macomtech.com/Content/technicalarticles.
- M/A-COM Technology Solutions Inc., “Drivers for GaAs FET switches and digital attenuators,” Application Note S2079, http://www.macomtech.com/Content/appnotes.
- DOGAN, H. AND MEYER, R.G. Intermodulation distortion in CMOS attenuators and switches. IEEE J. Solid-State Circuits, v.42, n.3, p.529-539, Mar. 2007.
- Hittite Microwave Corporation, “Floating ground SPNT MMIC switch driver techniques,” Product application notes 17-132, http://www.hittite.com/content/documents/floating_ground_spnt_mmic_switch_driver_techniques.pdf.
- BIENAIMÉ, J.-P. From HSPA to LTE and beyond: mobile broadband evolution. Microwave Journal, v.53, n.11 (Special Suppl.), p.4-10, Nov. 2010.
- LAI, R.-B.; CHAO, S.-F.; TSAI, Z.-M.; LEE, J.; WANG, H. Topology analysis and design of passive HEMT millimeter-wave multiple-port switches. IEEE Trans. Microwave Theory Tech., v.56, n.7, p.1545-1554, July 2008.
- HANCOCK, T.M. AND REBEIZ, G.M. Design and analysis of a 70-ps SiGe differential RF switch. IEEE Trans. Microwave Theory Tech., v.53, n.7, p.2403-2410, July 2005.
- WALSH, K. RF switches guide signals in smart phones. Microwaves & RF, Sept. 2010.
- ROMANOFSKY, R.R. Array Phase Shifters: Theory and Technology. Hanover, MD: NASA Center for Aerospace Information, Oct. 2007, NASA/TM—2007-214906.
- ASIF, A. AESA radar applications and market trends. Microwave Journal—Strategy Analytics Webinar, 25th January, 2011.
- SIEBER, M. AND SIMON, A. On the right wavelength: microwave and RF technology for defence. Microwave Journal, v.53, n.10, p.22-38, Oct. 2010.
- M/A-COM Tech Asia, Taiwan, ROC. 8.5 to 11 GHz highly integrated core chip provides high degree of functionality. Microwave Journal, v.54, n.1, p.118-120, Jan. 2011.
- FREESTON, A.; BOLES, T.; VARMAZIS, C. Speedy switches minimize gate lags. Microwaves & RF, Mar. 2010.
- BOLES, T. AND FREESTON, A. New nanosecond switch technology. Microwave Journal, v.53, n.6, p.56-60, June 2010.
- Peregrine Semiconductor. Product specification PE42510A SPDT high power UltraCMOS™ RF switch, 30 MHz–2000 MHz. http://www.psemi.com/pdf/datasheets/pe42510Ads.pdf.
- VOYTOVICH, V.YE.; GORDEYEV, А.I.; DUMANEVICH, А.N. Si, GaAs, SiC, GaN—power electronics. Comparison and new capabilities. Silovaya Elektronika, n.5, 2010.
- CAMPBELL, C.; LEE, C.; WILLIAMS, V.; KAO, M.-Y.; TSERNG, H.-Q.; SAUNIER, P.; BALISTERI, T. A wideband power amplifier MMIC utilizing GaN on SiC HEMT technology. IEEE J. Solid-State Circuits, v.44, n.10, p.2640-2647, Oct. 2009.
- KOBAYASHI, K.W.; CHEN, Y.C.; SMORCHKOVA, I.; HEYING, B.; LUO, W.-B.; SUTTON, W.; WOJTOWICZ, M.; OKI, A. A cool, sub-0.2 dB noise figure GaN HEMT power amplifier with 2-watt output power. IEEE J. Solid-State Circuits, v.44, n.10, p.2648-2654, Oct. 2009.
- KAMECHE, M. AND DROZDOVSKI, N.V. GaAs-, InP- and GaN HEMT-based microwave control devices: what is best and why. Microwave Journal, v.48, n.5, May 2005.
- SÜDOW, M.; FAGERLIND, M.; THORSELL, M.; ANDERSSON, K.; BILLSTRÖM, N.; NILSSON, P.-Å.; RORSMAN, N. An AlGaN/GaN HEMT-based microstrip MMIC process for advanced transceiver design. IEEE Trans. Microwave Theory Tech., v.56, n.8, p.1827-1833, Aug. 2008.
- KAPER, V.; THOMPSON, R.; PRUNTY, T.; SHEALY, J.R. Monolithic AlGaN/GaN HEMT SPDT switch. Proc. 12th GAAS Symposium, 2004, Amsterdam, 2004.
- CAMPBELL, C.F. AND DUMKA, D.C. Wideband high power GaN on SiC SPDT switch MMICs. Proc. IMS 2010 Conference, Anaheim, CA, 2010, p.145-148.
- WERNER, K. AND THEEUWEN, S. RF driven plasma lighting: the next revolution in light sources. Microwave Journal, v.53, n.12, p.68-74, Dec. 2010.
- BEREZNIAK, A.F. AND KOROTKOV, A.S. Solid-state microwave switches: Circuitry, manufacturing technologies and development trends. Review (Part 1). Radioelectron. Commun. Syst., v.56, n.4, p.159-177, 2013. doi:10.3103/S0735272713040018.

Downloads
Published
2013-05-01
Issue
Section
Review Articles