Solid-state microwave switches: Circuitry, manufacturing technologies and development trends. Review (Part 2)
DOI:
https://doi.org/10.3103/S0735272713050014Keywords:
GaN, microwave switch, single-pole single-throw, SPST, monolithic microwave integrated circuit, MMIC, HEMT, gallium nitrideAbstract
This paper presents an overview of the process and design capabilities of state-of-the-art in the field of microwave solid state switches. The paper describes types of solid state switches, switch specifications, a review of technological advances in this area. The overview results indicate that AlGaN/GaN MMICs including solid state switches are realizable.
References
HIEDA, M.; NAKAHARA, K.; KURUSU, H.; IYAMA, Y.; URASAKI, S. High-isolation series-shunt FET SPDT switch with a capacitor canceling FET parasitic inductance. IEEE Trans. Microwave Theory Tech., v.49, n.12, p.2453-2458, Dec. 2001.
TORRES, J.A. AND FREIRE, J.C. Monolithic transistors SPST switch for L-band. IEEE Trans. Microwave Theory Tech., v.50, n.1, p.51-56, Jan. 2002.
TSAI, Z.-M.; JIANG, Y.-S.; LEE, J.; LIN, K.-Y.; WANG, H. Analysis and design of bandpass single-pole–double-throw FET filter-integrated switches. IEEE Trans. Microwave Theory Tech., v.55, n.8, p.1601-1610, Aug. 2007.
LEE, J.; LAI, R.-B.; CHEN, C.-C.; LIN, C.-S.; LIN, K.-Y.; CHIONG, C.-C.; WANG, H. Low insertion-loss single-pole–double-throw reduced-size quarter-wavelength HEMT bandpass filter integrated switches. IEEE Trans. Microwave Theory Tech., v.56, n.12, p.3028-3038, Dec. 2008.
JIN, Y. AND NGUYEN, C. Ultra-compact high-linearity high-power fully integrated DC–20-GHz 0.18-um CMOS T/R switch. IEEE Trans. Microwave Theory Tech., v.55, n.1, p.30-36, Jan. 2007.
PAO, K.-H.; HSU, C.-Y.; CHUANG, H.-R.; CHEN, C.-Y. Design of a 3–10 GHz UWB CMOS T/R Switch. Microw. Opt. Technol. Lett., v.50, n.2, p.457-460, Feb. 2008.
TANAKA, S.; HORIUCHI, S.; KIMURA, T.; ATSUMI, Y. Design and fabrication of multiband p-i-n diode switches with ladder circuits. IEEE Trans. Microwave Theory Tech., v.54, n.4, p.1561-1568, April 2006.
DEVLIN, L. The design of integrated switches and phase shifters. Proc. of the IEE Tutorial Colloquium on “Design of RFICs and MMICs”, 24th November 1999, pp. 2/1-14.
AHN, M.; LEE, C.-H.; KIM, B.S.; LASKAR, J. A high-power CMOS switch using a novel adaptive voltage swing distribution method in multistack FETs. IEEE Trans. Microwave Theory Tech., v.56, n.4, p.849-858, April 2008.
HUANG, F.-J. AND O, K. A 0.5-um CMOS T/R switch for 900-MHz wireless applications. IEEE J. Solid-State Circuits, v.36, n.3, p.486-492, Mar. 2001.
PARK, P.; SHIN, D.H.; YUE, C.P. High-linearity CMOS T/R switch design above 20 GHz using asymmetrical topology and AC-floating bias. IEEE Trans. Microwave Theory Tech., v.57, n.4, p.948-956, Apr. 2009.
XU, H. AND O, K.K. A 31.3-dBm bulk CMOS T/R switch using stacked transistors with sub-design-rule channel length in floated p-wells. IEEE J. Solid-State Circuits, v.42, n.11, p.2528-2534, Nov. 2007.
WANG, J.-H.; HSIEH, H.-H.; LU, L.-H. A 5.2-GHz CMOS T/R switch for ultra-low-voltage operations. IEEE Trans. Microwave Theory Tech., v.56, n.8, p.1774-1782, Aug. 2008.
AHN, M.; KIM, H.-W.; LEE, C.-H.; LASKAR, J. A 1.8-GHz 33-dBm P0.1-dB CMOS T/R switch using stacked FETs with feed-forward capacitors in a floated well structure. IEEE Trans. Microwave Theory Tech., v.57, n.11, p.2661-2670, Nov. 2009.
LI, Q.; ZHANG, Y.P.; YEO, K.S.; LIM, W.M. 16.6- and 28-GHz fully integrated CMOS RF switches with improved body floating. IEEE Trans. Microwave Theory Tech., v.56, n.2, p.339-345, Feb. 2008.
MIN, B.-W. AND REBEIZ, G.M. Ka-band low-loss and high-isolation switch design in 0.13-um CMOS. IEEE Trans. Microwave Theory Tech., v.56, n.6, p.1364-1371, June 2008.
UZUNKOL, M. AND REBEIZ, G.M. A low-loss 50–70 GHz SPDT switch in 90 nm CMOS. IEEE J. Solid-State Circuits, v.45, n.10, p.2003-2007, Oct. 2010.
LI, Q. AND ZHANG, Y.P. CMOS T/R switch design: towards ultra-wideband and higher frequency. IEEE J. Solid-State Circuits, v.42, n.3, p.563-570, Mar. 2007.
MIZUTANI, H.; IWATA, N.; TAKAYAMA, Y.; HONJO, K. Design considerations for traveling-wave single-pole multithrow MMIC switch using fully distributed FET. IEEE Trans. Microwave Theory Tech., v.55, n.4, p.664-671, Apr. 2007.
WEIGAND, C. An ASIC driver for GaAs FET control components. Appl. Microwave Wireless, TA003, p.42-48, Dec. 2000, http://macomtech.com/Content/technicalarticles.
M/A-COM Technology Solutions Inc., “Drivers for GaAs FET switches and digital attenuators,” Application Note S2079, http://www.macomtech.com/Content/appnotes.
DOGAN, H. AND MEYER, R.G. Intermodulation distortion in CMOS attenuators and switches. IEEE J. Solid-State Circuits, v.42, n.3, p.529-539, Mar. 2007.
Hittite Microwave Corporation, “Floating ground SPNT MMIC switch driver techniques,” Product application notes 17-132, http://www.hittite.com/content/documents/floating_ground_spnt_mmic_switch_driver_techniques.pdf.
BIENAIMÉ, J.-P. From HSPA to LTE and beyond: mobile broadband evolution. Microwave Journal, v.53, n.11 (Special Suppl.), p.4-10, Nov. 2010.
LAI, R.-B.; CHAO, S.-F.; TSAI, Z.-M.; LEE, J.; WANG, H. Topology analysis and design of passive HEMT millimeter-wave multiple-port switches. IEEE Trans. Microwave Theory Tech., v.56, n.7, p.1545-1554, July 2008.
HANCOCK, T.M. AND REBEIZ, G.M. Design and analysis of a 70-ps SiGe differential RF switch. IEEE Trans. Microwave Theory Tech., v.53, n.7, p.2403-2410, July 2005.
WALSH, K. RF switches guide signals in smart phones. Microwaves & RF, Sept. 2010.
ROMANOFSKY, R.R. Array Phase Shifters: Theory and Technology. Hanover, MD: NASA Center for Aerospace Information, Oct. 2007, NASA/TM—2007-214906.
ASIF, A. AESA radar applications and market trends. Microwave Journal—Strategy Analytics Webinar, 25th January, 2011.
SIEBER, M. AND SIMON, A. On the right wavelength: microwave and RF technology for defence. Microwave Journal, v.53, n.10, p.22-38, Oct. 2010.
M/A-COM Tech Asia, Taiwan, ROC. 8.5 to 11 GHz highly integrated core chip provides high degree of functionality. Microwave Journal, v.54, n.1, p.118-120, Jan. 2011.
FREESTON, A.; BOLES, T.; VARMAZIS, C. Speedy switches minimize gate lags. Microwaves & RF, Mar. 2010.
BOLES, T. AND FREESTON, A. New nanosecond switch technology. Microwave Journal, v.53, n.6, p.56-60, June 2010.
Peregrine Semiconductor. Product specification PE42510A SPDT high power UltraCMOS™ RF switch, 30 MHz–2000 MHz. http://www.psemi.com/pdf/datasheets/pe42510Ads.pdf.
VOYTOVICH, V.YE.; GORDEYEV, А.I.; DUMANEVICH, А.N. Si, GaAs, SiC, GaN—power electronics. Comparison and new capabilities. Silovaya Elektronika, n.5, 2010.
CAMPBELL, C.; LEE, C.; WILLIAMS, V.; KAO, M.-Y.; TSERNG, H.-Q.; SAUNIER, P.; BALISTERI, T. A wideband power amplifier MMIC utilizing GaN on SiC HEMT technology. IEEE J. Solid-State Circuits, v.44, n.10, p.2640-2647, Oct. 2009.
KOBAYASHI, K.W.; CHEN, Y.C.; SMORCHKOVA, I.; HEYING, B.; LUO, W.-B.; SUTTON, W.; WOJTOWICZ, M.; OKI, A. A cool, sub-0.2 dB noise figure GaN HEMT power amplifier with 2-watt output power. IEEE J. Solid-State Circuits, v.44, n.10, p.2648-2654, Oct. 2009.
KAMECHE, M. AND DROZDOVSKI, N.V. GaAs-, InP- and GaN HEMT-based microwave control devices: what is best and why. Microwave Journal, v.48, n.5, May 2005.
SÜDOW, M.; FAGERLIND, M.; THORSELL, M.; ANDERSSON, K.; BILLSTRÖM, N.; NILSSON, P.-Å.; RORSMAN, N. An AlGaN/GaN HEMT-based microstrip MMIC process for advanced transceiver design. IEEE Trans. Microwave Theory Tech., v.56, n.8, p.1827-1833, Aug. 2008.
KAPER, V.; THOMPSON, R.; PRUNTY, T.; SHEALY, J.R. Monolithic AlGaN/GaN HEMT SPDT switch. Proc. 12th GAAS Symposium, 2004, Amsterdam, 2004.
CAMPBELL, C.F. AND DUMKA, D.C. Wideband high power GaN on SiC SPDT switch MMICs. Proc. IMS 2010 Conference, Anaheim, CA, 2010, p.145-148.
WERNER, K. AND THEEUWEN, S. RF driven plasma lighting: the next revolution in light sources. Microwave Journal, v.53, n.12, p.68-74, Dec. 2010.
BEREZNIAK, A.F. AND KOROTKOV, A.S. Solid-state microwave switches: Circuitry, manufacturing technologies and development trends. Review (Part 1). Radioelectron. Commun. Syst., v.56, n.4, p.159-177, 2013. doi:10.3103/S0735272713040018.