Solid-state microwave switches: circuitry, manufacturing technologies and development trends. Review (Part 1)

Authors

  • Anatolii Berezniak Saint Petersburg State Polytechnical University, Russian Federation
  • Alexander S. Korotkov Peter the Great Saint Petersburg Polytechnic University, Russian Federation https://orcid.org/0000-0001-8407-6528

DOI:

https://doi.org/10.3103/S0735272713040018

Keywords:

microwave switch, single-pole single-throw, SPST, monolithic microwave integrated circuit, MMIC, HEMT, gallium nitride, GaN

Abstract

This paper presents an overview of the process and design capabilities of state-of-the-art in the field of microwave solid state switches. The paper describes types of solid state switches, switch specifications, a review of technological advances in this area. The overview results indicate that AlGaN/GaN MMICs including solid state switches are realizable.

References

HINDLE, P. The State of RF/Microwave Switches. Microwave Journal, v.53, n.11, p.20-36, Nov. 2010.

GOTCH, D. A Review of Technological Advances in Solid-state Switches. Microwave Journal, v.50, n.11, p.24-34, Nov. 2007.

Understanding RF/Microwave Solid State Switches and Their Applications, Agilent Application Note, No. 5989-7618EN, May 2010.

BELOV, L. Microwave signal switches. Elektronika: Nauka, Tekhnologiya, Biznes, n.1, p.20-25, 2006.

MARSH, S. Practical MMIC Design. Norwood MA: Artech House, 2006.

BAHL, AND BHARTIA, I.P. Microwave Solid State Circuit Design. Hoboken: John Wiley & Sons Inc., 2003.

RAZINKIN, V.P.; KHRUSTALIOV, V.А.; MATVEYEV, S.YU. Wideband Controllable Microwave High-Power Devices. Novosibirsk: NGTU, 2008. 305 p. [in Russian].

ROBERTSON, I.D. AND LUCYSZYN, S. RFIC and MMIC Design and Technology. London: The Institution of Engineering and Technology, 2009.

GOLIO, M. The RF and Microwave Handbook. Boca Raton: CRC Press LLC, 2001.

Application note “Design With PIN Diodes”, Skyworks Solutions, Inc., No. 200312 Rev. C., April 27, 2009.

NELSON, R. RF Switching options: the right fit might come with a loss. EDN Europe, p. 23–27, Oct. 2009.

Solid State PIN Control Products, Narda microwave-east, http://www.nardamicrowave.com/east/pdfs/SolidStatePinIntro.pdf.

CORY, R. RF/Microwave Solid State Switches. MPD/Microwave Product Digest, May 2009.

KOROTKOV, А.S. Integrated (microelectronic) radio receiving devices of communications systems. Review. Mikroelektronika, v.35, n.4, p.321-341, 2006.

BOLES, T. AND Freeston, A. New NanoSecond Switch Technology. Microwave Journal, v.53, n.6, p.56-60, June 2010.

FREESTON, A. Understanding Gate Lag and How it Differs From Switching Speed. MPD/Microwave Product Digest, Sept. 2008.

Video Leakage Effects on Devices in Component Test, Agilent Application Note, No. 5989-6086EN, 2007.

LADBROOKE, P.H. MMIC design GaAs FETs and HEMTs. Boston–London: Artech House, 1989.

The PIN Diode Circuit Designers’ Handbook. Watertown: Microsemi Corp.-Watertown, 1998.

Applications of PIN Diodes. Application Note. Hewlett-Packard. 922 p.

CORY, R. AND FRYKLUND, D. Solid State RF/Microwave Switch Technology: Part 2. MPD/Microwave Product Digest, June 2009.

MAY, G.S. AND SPANOS, C.J. Fundamentals of Semiconductor Manufacturing and Process Control. Hoboken: John Wiley & Sons Inc., 2006.

LI, Q. AND ZHANG, Y.P. CMOS T/R Switch Design: Towards Ultra-Wideband and Higher Frequency. IEEE J. Solid-State Circuits, v.42, n.3, p.563-570, March 2007. doi:http://dx.doi.org/10.1109/JSSC.2006.891442">10.1109/JSSC.2006.891442

HINDLE, P. 2010 GaAs Foundry Services Outlook. Microwave Journal, v.53, n.6, p.20-28, 112, June 2010.

BOSCH, W. GaAs Industry in Europe—Technologies, Trends and New Developments. Proc. of Conf. CS MANTECH, May 14-17, 2007, Austin, Texas, USA (Texas, 2007), pp. 7–10.

http://www.aurigamicrowave.com/am/history.shtml">http://www.aurigamicrowave.com/am/history.shtml.

STEVENSON, R. DARPA rattles up a half century. Compound Semiconductor, v.14, n.6, p.19-21, July 2008.

VIA, G.D.; BINARI, S.C.; JUDY, D. A “Snapshot” of AlGaN/GaN HEMT State-of-the-Technology. GaAs Mantech Digest, 2004.

ROSKER, M. Wide Bandgap Semiconductor Devices and MMICs: A DARPA Perspective. GaAs Mantech Digest, 2005.

ROSKER, M. The DARPA COmpound Semiconductors On Silicon (COSMOS) Program. Proc. of Conf. CS MANTECH, Chicago, 2008.

ROSKER, M.J.; ALBRECHT, J.D.; COHEN, E.; HODIAK, J.; CHANG, T.H. DARPA’s GaN technology thrust. Microwave Symposium Digest (MTT), Anaheim, CA, 2010; IEEE MTT-S Int. Microwave Symp. Dig., p.1214-1217, 2010. doi:http://dx.doi.org/10.1109/MWSYM.2010.5514755">10.1109/MWSYM.2010.5514755.

REPTIN, G. AND GAUTHIER, F. KORRIGAN: Development of GaN HEMT Technology in Europe. Proc. of Conf. CS MANTECH, 2006, Vancouver, British Columbia, Canada, 2006.

NANISHI, Y.; MIYAMOTO, H.; SUZUKI, A.; OKUMURA, H.; SHIBATA, N. Development of AlGaN/GaN High Power and High Frequency HFETs under NEDO’s Japanese National Project. Proc. of Conf. CS MANTECH, 2006, Vancouver, British Columbia, Canada, 2006.

NIEHENKE, E.C.; PUCEL, R.A.; BAHL, I.J. Microwave and millimeter-wave integrated circuits. IEEE Trans. Microwave Theory Tech., v.50, n.3, p.846-857, March 2002. doi:http://dx.doi.org/10.1109/22.989968">10.1109/22.989968.

FENG, M.; SHEN, S.; CARUTH, D.C.; HUANG, J.-J. Device technologies for RF front-end circuits in next-generation wireless communications. Proc. IEEE, v.92, n.2, p.354-375, Feb. 2004. doi:http://dx.doi.org/10.1109/JPROC.2003.821903">10.1109/JPROC.2003.821903.

LIM, C.L. Tackle Wideband RF Switching With PIN Diodes. Microwaves & RF, Feb. 2007.

http://www.microwaves101.com/encyclopedia/diodes_PIN.cfm ">http://www.microwaves101.com/encyclopedia/diodes_PIN.cfm.

VPIN (Vertical P-I-N) GaAs Diode. TriQuint Semiconductor, http://www.triquint.com/prodserv/foundry/process_info.cfm#VPIN ">http://www.triquint.com/prodserv/foundry/process_info.cfm#VPIN.

ALEKSEEV, E.; PAVLIDIS, D.; DICKMANN, J.; HACKBARTH, T. W-band InGaAs/InP PIN Diode Monolithic Integrated Switches. Proc. of IEEE GaAs IC Symposium, 1996, Ulm, Germany. Ulm, 1996.

ZIEGLER, V.; BERG, M.; TOBLER, H.; WOLK, C.; DEUFEL, R.; DICKMANN, J. InP-Based monolithic integrated pin diode switches for mm-wave applications. Proc. of GAAS 98, Amsterdam, p.127-132, 1998.

ZIEGLER, V.; GASSLER, C.; WOLK, C.; BERLEC, F.-J.; DEUFEL, R.; BERG, M.; DICKMANN, J.; SCHUMACHER, H.; ALEKSEEV, E.; PAVLIDIS, D. InP-based and metamorphic devices for multifunctional MMICs in mm-wave communication systems. Proc. 12th Indium Phosphide and Related Materials Conf., IPRM, 2000, p.341-344.

Cobham. Glass Microwave Integrated Circuit (GMIC). Products and Services, http://www.cobham.com/sensorsystems">http://www.cobham.com/sensorsystems.

BOLES, T.; BROGLE, J.; HUBERT, R. A Monolithic High Power, High Linearity, Multi-Octave PIN Diode T/R Switch. MPD/Microwave Product Digest, July 2007.

JORDAN, D.M.; HASLAM, R.H.; MALLIK, K.; WILSHAW, P.R. The Development of Semi-insulating Silicon Substrates for Microwave Devices. The Electrochemical Society, ECS Transations, v.16, n.6, p.41-56. NJ: Pennington, 2008.

JAIN, N. AND GUTMANN, R.J. Modeling and design of GaAs MESFET control devices for broad-band applications. IEEE Trans. Microwave Theory Tech., v.38, n.2, p.109-117, Feb. 1990. doi:http://dx.doi.org/10.1109/22.46418">10.1109/22.46418.

OKUMURA, H. Present status and future prospect of widegap semiconductor high-power devices. Japan. J. Appl. Phys., v.45, n.10A, p.7565-7586, 2006. doi:http://dx.doi.org/10.1143/JJAP.45.7565">10.1143/JJAP.45.7565.

TANAKA, T.; HASHIMOTO, T.; WASHIMA, M.; OTOKI, Y. Large Diameter M-HEMT & InP-HEMT Epiwafers Grown in Multicharge MOVPE Reactors. Proc. of GaAs MANTECH, 2001, Saint Louis, MO, US. Saint Louis, 2001.

XING, H.; ZIMMERMANN, T.; DEEN, D.; WANG, K.; YU, C.; KOSEL, T.; FAY, P.; JENA, D. Ultrathin all-binary AlN/GaN based high-performance RF HEMT Technology. Proc. of Conf. CS MANTECH, April 14–17, 2008, Chicago, Illinois, USA. Chicago, 2008.

FELBINGER, J.G.; CHANDRA, M.V.S.; SUN, Y.; EASTMAN, L.F.; WASSERBAUER, J.; FAILI, F.; BABIC, D.; FRANCIS, D.; EJECKAM, F. Comparison of GaN HEMTs on diamond and SiC substrates. IEEE Electron Device Lett., v.28, n.11, p.948-950, Nov. 2007. doi:http://dx.doi.org/10.1109/LED.2007.908490">10.1109/LED.2007.908490.

Picogiga. GaN Thin Epiwafers, http://www.soitec.com/pdf/picogiga-gan-thin-epiwafers.pdf ">http://www.soitec.com/pdf/picogiga-gan-thin-epiwafers.pdf.

CELLER, G.K. AND CRISTOLOVEANU, S. Frontiers of silicon-on-insulator. J. Appl. Phys., v.93, n.9, p.4955-4978, May 2003. doi:http://dx.doi.org/10.1063/1.1558223">10.1063/1.1558223.

CELLER, G. AND WOLF, M. A guide to the technology, the process, the products. Soitec, July 2003, http://www.soitec.com/pdf/SmartCut_WP.pdf ">http://www.soitec.com/pdf/SmartCut_WP.pdf.

MILLER, N.; TAPILY, K.; BAUMGART, H.; CELLER, G.K.; BRUNIER, F.; ELMUSTAFA, A.A. Nanomechanical properties of strained Silicon-on-Insulator (SOI) films epitaxially grown on Si1-xGex and layer transferred by wafer bonding. Materials Research Society, Mater. Res. Soc. Symp. Proc., v.1021, 2007.

KELLY, D.J. CMOS-on-sapphire RF switches for cellular handset applications. Proc. of Conf. CS MANTECH, April 14–17, 2008, Chicago, Illinois, USA. Chicago, 2008.

III-V RF R&D, Soitec, http://www.soitec.com/picogiga/research-development/">http://www.soitec.com/picogiga/research-development/.

DUMKA, D.C. AND SAUNIER, P. AlGaN/GaN HEMTs on diamond substrate. Proc. of 65th Annual Device Research Conf., p.31-32, 2007.

Published

2013-04-01

Issue

Section

Review Articles