Algorithm for multiplying two octonions

Authors

  • Aleksandr Cariow West Pomeranian University of Technology, Poland
  • Galina Cariowa West Pomeranian University of Technology, Poland

DOI:

https://doi.org/10.3103/S0735272712100056

Keywords:

hypercomplex numbers, octonion, fast algorithm for multiplying octonions

Abstract

We consider algorithmic aspects of improving calculations of octonion product. Octonions together with quaternions represent a variety of hypercomplex numbers. An advantage of the suggested algorithm consists in decreased twice number of calculated real number products needed to compute the octonion product if compared to a straightforward naive way of performing the calculation. During synthesis of the discussed algorithm we use a fact that octonions product may be represented by a vector-matrix product. Such representation provides a possibility to discover repeating elements in the matrix structure and to use specific properties of their mutual placement to decrease the number of real number products needed to compute the octonion product.

References

I. L. Kantor and А. S. Solodovnikov, Hypercomplex Numbers (Nauka, Moscow, 1973) [in Russian].

М. V. Sinkov, Yu. Ye. Boyarinova, and Ya. A. Kalinovskiy, Finite-Dimensional Hypercomplex Number Systems. Basic Theory. Applications (IPRI NANU, Kyiv, 2010) [in Russian].

E. Malekian and A. Zakerolhosseini, “NTRU-Like Public Key Cryptosystems beyond Dedekind Domain up to Alternative Algebra” (Section 2), Transactions on Computational Science (Springer, 2011), pp. 25–41.

T. Bülow and G. Sommer, “Hypercomplex signals—a novel extension of the analytic signal to the multidimensional case,” IEEE Trans. Signal Process. SP-49, No. 11, 2844 (Nov. 2001).

D. Alfsmann, “On families of 2N-dimensional hypercomplex algebras suitable for digital signal processing,” in Proc. European Signal Processing Conf. EUSIPCO, 2006, Florence, Italy (Florence, 2006).

D. Alfsmann, H. G. Göckler, S. J. Sangwine, and T. A. Ell, “Hypercomplex Algebras in Digital Signal Processing: Benefits and Drawbacks (Tutorial),” in Proc. EURASIP 15th European Signal Processing Conf. EUSIPCO, 2007, Poznań, Poland (Poznań, 2007), pp. 1322–1326.

S. J. Sangwine and N. Le Bihan, “Hypercomplex analytic signals: extension of the analytic signal concept to complex signals,” in Proc. EURASIP 15th European Signal Processing Conf. EUSIPCO, 2007, Poznaс, Poland (Poznań, 2007), pp. 621–624.

C. E. Moxey, S. J. Sangwine, and T. A. Ell, “Hypercomplex correlation techniques for vector images,” IEEE Trans. Signal Process. 51, 1941 (July 2003).

E. Bayro-Corrochano, “Multi-resolution image analysis using the quaternion wavelet transform,” Numerical Algorithms 39, Nos. 1–3, 35 (July, 2005).

L. Shi and B. Funt, “Quaternion Colour Texture Segmentation,” Comput. Vis. Image Und. 107, Nos. 1–2, 88 (2007).

L. Kavan, S. Collins, J. Žára, and C. O’Sullivan, “Skinning with Dual Quaternions,” in Proc. Symp. on Interactive 3D Graphics and Games, I3D’07 (2007). pp. 1–23.

R. Calderbank, S. Das, N. Al-Dhahir, and S. Diggavi, “Construction and analysis of a new quaternionic Space-time code for 4 transmit antennas,” Commun. Inf. Syst. 5, No. 1, 1 (2005).

J.-C. Belfiore and G. Rekaya, “Quaternionic lattices for space-time coding,” in Proc. of Inf. Theory Workshop. IEEE, ITW 2003, 31 March—4 April 2003, Paris, France (2003).

Ö. Ertuğ, “Communication over Hypercomplex Kahler Manifolds: Capacity of Dual-Polarized Multidimensional-MIMO Channels,” Wireless Personal Commun. 41, No. 1, 155 (April 2007).

О. М. Makarov, “Algorithm of multiplying two quaternions,” Zh. Vychisl. Matem. i Matem. Fiz. 17, No. 6, 1574 (1977).

S. K. Rososhek, A. I. Litvin, N. Ye. Cherniayeva, “Fast algorithm of multiplying two hypercomplex numbers,” Vestnik TGU. Ser. Matematika. Kibernetika. Informatika, No. 269, 66 (2000).

A. Ţariov and G. Ţariova, “Aspekty algorytmiczne organizacji ukladu procesorowego do mnozenia liczb Cayleya,” Elektronika, No. 11, 137 (2010).

A. Ţariov, “Strategie racjonalizacji obliczen przy wyznaczaniu iloczynow macierzowo-wektorowych,” Metody Informatyki Stosowanej, No. 1, 147 (2008).

А. Ţariov, Algorytmiczne Aspekty Racjonalizacji Obliczen w cyfrowym przetwarzaniu sygnalow (Metody Informatyki Stosowanej, Gdaсsk, 2011) [in Poland].

Published

2012-10-01

Issue

Section

Research Articles