Properties of characteristics estimators of periodically correlated random processes in preliminary determination of the period of correlation

Authors

  • Ihor N. Yavorskyj Karpenko Physico-Mechanical Institute of NASU; University of Technology and Life Sciences, Ukraine https://orcid.org/0000-0002-6533-3186
  • Roman Yuzefovych Karpenko Physico-Mechanical Institute of NASU; Lviv Polytechnic National University, Ukraine https://orcid.org/0000-0001-5546-453X
  • I. B. Kravets Karpenko Physico-Mechanical Institute of NASU, Ukraine
  • Ivan Y. Matsko Karpenko Physico-Mechanical Institute of NASU, Ukraine

DOI:

https://doi.org/10.3103/S0735272712080018

Keywords:

periodically correlated random process, estimator of probabilistic characteristics, consistency, period of correlation, small parameter method

Abstract

The coherent estimators of probabilistic characteristics of periodically correlated random processes with unknown period have been investigated. It is shown that these estimators are asymptotically unbiased and consistent. In a first approximation formulas were obtained for the bias and dispersion of estimators defining the impact of the preliminary determination of the period on the value of estimation error.

Author Biography

Roman Yuzefovych, Karpenko Physico-Mechanical Institute of NASU; Lviv Polytechnic National University

(2012) Karpenko Physico-Mechanical Institute of NASU

References

I. Javorskyj, I. Isayev, Z. Zakrzewski, and S. P. Brooks, “Coherent Covariance Analysis of Periodically Correlated Random Processes,” Signal Processing 86, No. 1, 13 (2007).

I. Javorskyj, I. Isayev, J. Majewski, and R. Yuzefovych, “Component Covariance Analysis for Periodically Correlated Random Processes,” Signal Processing 90, 1083 (2010).

I. N. Yavorskyj, R. M. Yuzefovych, I. B. Kravets, and Z. Zakrzewski, “Least Squares Method in the Statistic Analysis of Periodically Correlated Random Processes,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 54(1), 54 (2011) [Radioelectron. Commun. Syst. 54(1), 45 (2011)].

I. Javorskyj, J. Leskow, I. Kravets, and E. Gajecka, “Linear Filtration Methods for Statistical Analysis of Periodically Correlated Random Processes. Part II: Harmonic Series Representation,” Signal Processing 91, 2506 (2011).

I. N. Yavorskyj, “Application of the Buijs-Ballot Circuit in the Statistical Analysis of Rythmic Signals,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 27(11), 31 (1984) [Radioelectron. Commun. Syst. 27(11), 25 (1984)].

I. Javorskyj and V. Mykhajlyshyn, “Probabilistic Models and Investigation of Hidden Periodicities,” Appl. Math. Letters 9, No. 2, 21 (1996).

M. G. Serebrennikov and L. A. Pervozvanskii, Detection of Hidden Periodicities (Nauka, Moscow, 1965) [in Russian].

A. M. Yaglom, Probabilistic Methods for the Phythmics Analysis of Oceanological Processes (Gidrometeoizdat, Leningrad, 1981) [in Russian].

Ya. P. Dragan, V. A. Rozhkov, and I. N. Yavorskii, Probabilistic Methods for the Phythmics Analysis of Oceanological Processes (Gidrometeoizdat, Leningrad, 1987) [in Russian].

V. I. Tikhonov, Statistical Radio Engineering (Sov. Radio, Moscow, 1966) [in Russian].

Published

2012-08-01

Issue

Section

Research Articles