About properties of estimations of correlation characteristics of non-stationery modulated signals

Authors

DOI:

https://doi.org/10.3103/S0735272712060040

Keywords:

periodically correlated random processes, correlation function, stationary approximation, estimator, variance

Abstract

The influence of non–stationarity on estimator properties of correlation function stationary approximation of periodically correlated random processes is analyzed. Shown that non–stationarity considerably changes variance value and its behavior as time lag increases.

Author Biography

Roman Yuzefovych, Karpenko Physico-Mechanical Institute of NASU; Lviv Polytechnic National University

(2012) Karpenko Physico-Mechanical Institute of NASU

References

C. Shannon, “Mathematical Theory of Communication,” Bell Sys. Tech. J. 27, 379, 623 (1948).

Ya. P. Dragan and I. N. Javorskij, Rhythmics of Sea Roughness and Natural Acoustic Signals (Naukova Dumka, Kyiv, 1982) [in Russian].

Ya. P. Dragan, V. A. Rozhkov, and I. N. Javorskij, The Methods of Probabilistic analysis of Ocean Process Rhythmics (Gidrometeoizdat, Leningrad, 1987) [in Russian].

W. A. Gardner (ed.), Cyclostationarity in Communication and Signal Processing (IEEE Press, New York, 1994).

Ya. P. Dragan, “About Representation of Periodically Correlated Signals with Stationery Components,” Otbor i Peredacha Informatsii, No. 45, 7 (1975).

I. M. Javorskyj, “The Probabilistic Analysis of Stochatic Oscilation,” Informatisation Technologies and Systems, P.1 2, No. 1, 42 (1999); P.2 5, No. 1–2, 168 (2002).

I. Javorskyj, I. Isayev, Z. Zakrzewski, and S. P. Brooks, “Coherent Covariance Analysis of Periodically Correlated Random Processes,” Signal Processing 87, No. 1, 13 (2007).

I. Javorskyj, I. Isayev, J. Majewski, and R. Yuzefovych, “Component Covariance Analysis for Periodically Correlated Random Processes,” Signal Processing 90, 1083 (2010).

I. N. Yavorskyj, R. M. Yuzefovych, I. B. Kravets, and Z. Zakrzewski, “Least Squares Method in the Statistic Analysis of Periodically Correlated Random Processes,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 54(1), 54 (2011) [Radioelectron. Commun. Syst. 54(1), 45 (2011)].

I. Javorskyj, J. Leskow, I. Kravets, I. Isayev, and E. Gajecka, “Linear filtration methods for statistical analysis of periodically correlated random processes,” Signal Processing 91, 2506 (2011).

I. N. Javorskij, “Application of Buys-Ballot Method for Statistic Analysis of Rhythmic Signals,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 27(11), 31 (1984); Radioelectron. Commun. Syst. 27(11), 27 (1984).

I. N. Javorskij, “About Statistical Analysis of Periodically Correlated Random Processes,” Radiotekh. Elektron. No. 6, 1096 (1985).

Published

2012-06-01

Issue

Section

Research Articles