Regular method of synthesis of substitute cryptographic constructions with maximum distance of nonlinearity
DOI:
https://doi.org/10.3103/S073527271203003XKeywords:
encryption, Boolean functions, algebraic normal form, affine codes, Hamming distance, m–shift, cyclic time shift, permutation, cyclic frequency shift, maximin optimality criterionAbstract
We propose a regular method of synthesis of optimal substitution cryptographic constructions — S-boxes, with a maximum distance of nonlinearity, and other cryptographic practically attractive properties. The presented method based on the m–shift operators, permutations, cyclic time shift, cyclic frequency shift.
References
B. Ya. Ryabko and A. N. Fionov, Principles of Modern Cryptography and Steganography (Goryachaya Liniya–Telekom, Moscow, 2010) [in Russian].
B. Sklar, Digital Communications. Fundamentals and Applications, 2nd ed. (Prentice-Hall, New Jersey, 2001).
V. I. Dolgov, R. V. Oleinikov, I. V. Lisitskaya, et al., “Substitute Constructions of Modern Symmetric Block Ciphers,” Radioelektronni i kompyuterni systemy, No. 6, 89 (2009).
M. I. Mazurkov, V. Ya. Chechelnytskyi, and K. K. Nekrasov, “Three-level cryptographic system for block data encryption,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 53 (7), 43 (2010) [Radioelectron. Commun. Syst. 53 (7), 376 (2010)], DOI: 10.3103/S0735272710070058.
A. M. Trakhtman and V. A. Trakhtman, Theoretical Principles of Discrete Signals on Finite Intervals (Sov. Radio, Moscow, 1975) [in Russian].
M. I. Mazurkov, Broadband Wireless Communications: Textbook for Students of Higher School (Nauka i Tekhnika, Odessa, 2010) [in Russian].
R. E. Blahut, Theory and Practice of Error Control Codes (Addison-Wesley Publishing Company Inc., 1983).
M. I. Mazurkov and M. Yu. Gerasimenko, “Fast Orthogonal Transforms Based on Perfect Binary Arrays,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 49 (9), 54 (2006); Radioelectron. Commun. Syst. 49 (9), 36 (2006).
M. I. Mazurkov, V. Ya. Chechel’nitskii and P. Murr, “Information security method based on perfect binary arrays,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 51 (11), 53 (2008) [Radioelectron. Commun. Syst. 51 (11), 612 (2008)], DOI: 10.3103/S0735272708110095.