Multi-view synthesized aperture radar
DOI:
https://doi.org/10.3103/S0735272711100025Keywords:
plane radar, radar with synthesized aperture, multi-view images, signal processing, radar images, trajectory instabilitiesAbstract
This article considers synthesized aperture radar (SAR), developed and manufactured in Radio Astronomy Institute of Ukrainian Academy of Sciences. SAR operates in 3 cm frequency band and it intended for obtaining multi-view images from light-motor planes. Technical and scientific solutions found during design of this radar are described. Characteristics examples of obtained images are provided.
References
C. J. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images (Artech House, Boston–London, 1998).
C. H. Gierull, “Statistical analysis of multilook SAR interferograms for CFAR detection of ground moving targets,” IEEE Trans. Geosci. Remote Sensing 42, No. 4, 691 (2004).
O. O. Bezvesilniy, I. V. Dukhopelnykova, V. V. Vinogradov, and D. M. Vavriv, “Retrieving 3-D topography by using a single-antenna squint-mode airborne SAR,” IEEE Trans. Geosci. Remote Sensing 45, No. 11, 3574 (2007).
D. М. Vavriv, O. O. Bezvesilniy, V. V. Vinogradov, and Ye. V. Duhopelnikova, “Determination of Earth surface relief using high-precision measurements of Doppler centroid by means of plane radar with synthesized aperture,” DAN Ukraine, No. 4, 86 (2008).
G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing (CRC Press, New York, 1999).
S. Buckreuss, “Motion errors in an airborne synthetic aperture radar system,” European Trans. Telecom. 2, No. 6, 655 (1991).
D. Blacknell, A. Freeman, S. Quegan, et al., “Geometric accuracy in airborne SAR images,” IEEE Trans. Aerosp. Electron. Syst. 25, No. 2, 241 (1989).
O. O. Bezvesilniy, I. M. Gorovyi, S. V. Sosnytskiy, V. V. Vinogradov, and D. M. Vavriv, “SAR processing algorithm with built-in geometric correction,” Radiofiz. Radioastron. 16, No. 1, 98 (2011).
O. O. Bezvesilniy, I. M. Gorovyi, V. V. Vinogradov, and D. M. Vavriv, “Correction of radiometric errors by multi-look processing with extended number of looks,” in Proc. of 11th Int. Radar Symposium (IRS 2010), June 16–18, 2010, Vilnius, Lithuania (Vilnius, 2010), Vol. 1, pp. 26–29.
O. O. Bezvesilniy, I. M. Gorovyi, V. V. Vynogradov, and D. M. Vavriv, “Range-Doppler algorithm with extended number of looks,” in Proc. of 3rd Int. Microwaves, Radar and Remote Sensing Symposium (MRRS 2011), August 25–27, 2011, Kyiv, Ukraine (Kyiv, 2011).
D. M. Vavriv, V. V. Vinogradov, V. A. Volkov, et al., “Cost-effective airborne SAR,” Radiofiz. Radioastron. 11, No. 3, 276 (2006).
O. O. Bezvesilniy, V. V. Vinogradov, and D. M. Vavriv, “Estimating Doppler centroid and autofocusing for airborne SAR,” in Proc. of 6th Int. Radar Symposium (IRS 2005), September 6–8, 2005, Berlin, Germany (Berlin, 2005), pp. 59–63.
O. O. Bezvesilniy, D. М. Vavriv, and V. V. Vinogradov, “Estimation of Doppler centroid and auto-focusing in airborne side observation synthesized aperture radar,” DAN Ukraine, No. 9, 77 (2005).
S. S. Sekretarov and D. М. Vavriv, “Waveguide-slot antennas for modern radar systems,” Uspekhi Sovremennoi Radioelektroniki. Zarubezhnaya Radioelektronika, No. 3, 45 (2011).
I. G. Cumming and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation (Artech House, Boston–London, 2005).