Superheterodyne amplification of electromagnetic waves of optical and terahertz bands in gallium nitride films
DOI:
https://doi.org/10.3103/S0735272711080012Keywords:
superheterodyne amplification, optical band, terahertz band, gallium nitride film, space change waveAbstract
Superheterodyne amplification of electromagnetic waves of optical and terahertz bands in the case of three-wave interaction in n–GaN films with the space change wave of millimeter band amplified due to negative differential resistance is studied. It is shown that amplification of the space change wave in n–GaN films may be achieved on higher frequencies f ≤ 500 GHz than when using GaAs. The case of three-wave resonant interaction of two counter-propagating waves with the space charge wave is considered for the waveguide on based on GaN film on dielectric substrate. It is shown that gain of electromagnetic waves of optical band may reach 20–40 dB on the waveguide lengths of up to 100 μm.
References
D. D. Arnone, C. M. Ciesla, A. Corchia, et al., “Applications of terahertz (THz) technology to medical imaging,” Proc. SPIE 3828, 209 (1999).
R. Kohler, A. Trediucci, F. Beltram, et al., “Terahertz semiconductor–heterostructure laser,” Nature 417, 156 (2002).
E. R. Mueller, J. Fontanella, R. Henschke, “Stabilized, integrated, far–infrared laser system for NASA/Goddard Space Flight Center,” in Proc. of 11th Int. Symp. “Space Terahertz Technology,” May 1–3, 2000, Ann Arbor, MI (MI, 2000), p. 6.
E. R. Mueller and J. Waldman, “Power and spatial mode measurements of sideband generated, spatially filtered, submillimeter radiation,” IEEE Trans. Microwave Theory Tech. 42, No. 10, 1891 (Oct. 1994).
M. Rochat, L. Ajili, H. Willenberg, et al., “Low–threshold terahertz quantum–cascade lasers,” Appl. Phys. Lett. 81, 1381 (2002).
P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microwave Theory Tech. 50, No. 3, 910 (March 2002).
B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4–THz quantum cascade laser based on LO–phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015 (2003).
A. A. Barybin, “Electrodynamic concepts of wave interactions in thin–film semiconductor structures,” Pt. I and II, Advances Electronics Electron Phys. 44, (1977); 45 (1978).
A. A. Barybin, Waves in Thin-Film Semiconductor Structures with Hot Electrons (Nauka, Moscow, 1986) [in Russian].
S. Koshevaya, V. Grimalsky, J. Escobedo–Alatorre, and M. Tecpoyotl–Torres, “Superheterodyne amplification of sub–millimeter electromagnetic waves in an n–GaAs film,” Microelectron. J. 34, No. 4, 231 (2003).
А. L. Kalapusha and N. Ya. Kotsarenko, “Acoustic-electronic parameter amplification of IR and visible electromagnetic waves in planar optical waveguides,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 26(5), 71 (1983); Radioelectron. Commun. Syst. 26(5), 68 (1983).
M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN (Wiley-Interscience, New York, 2001).
V. Siklitsky, “GaN — Gallium Nitride,” http://www.ioffe.ru/SVA/ NSM/Semicond/GaN/.
S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: processing, defects, and devices,” J. Appl. Phys. 86, No. 1, 1 (1999).
S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, “III–nitrides: growth, characterization, and properties,” J. Appl. Phys. 87, No. 3, 965 (2000).
V. Gruzhinskis, P. Shiktorov, E. Starikov, and J. H. Zhao, “Comparative study of 200–300 GHz microwave power generation in GaN TEDs by the Monte Carlo technique,” Semicond. Sci. Tech. 16, No. 8, 798 (2001).
G. E. Chaika, V. N. Malnev, and M. I. Panfilov, “Interaction of light with space charge waves,” Proc. SPIE. 2795, 279 (1996).
D. G. Sannikov and D. I. Semetsov, “Waveguide interaction of light with amplifying SCW,” FТТ 49, No. 3, 468 (2007).
D. Markuse, Theory of Dielectric Optical Waveguides (Academic Press, New York–London, 1974; Mir, Moscow, 1974).