Statement of a problem of definition of linear signals parameters in quasinormed space

Authors

DOI:

https://doi.org/10.3103/S0735272710070046

Keywords:

linear parameters, quasinormed spaces, method of minimum of duration, myriad filtering

Abstract

It is proposed an approach of statement of a problem of signals linear parameters definition, which is based on a conception of a space Lp, 0 ≤ p < 1. It is shown that formulating the criteria in these spaces has its advantages in case when processed signals contain rough deviations from their models values, appearing due to missing or premeditated distortion of a part of their values, or when different signal fragments correspond to different model parameters values. It is underlined that in case of noise absence problem statements in L0 and Lp, 0 < p < 1, are equivalent, and in case of noise presence an optimal value of p must exist. There is represented generalized functional; its particular cases are functional analogs of myriad and meridian filtrations.

References

J. Bergh and J. Lцfstrцm, Interpolation Spaces, an Introduction (Springer-Verlag, Berlin-Heidelberg-New York, 1976; Mir, Moscow, 1980).

A. N. Kholmogorov and S. V. Fomin, Elements of Functions Theory and Functions Analysis (Nauka, Moscow, 1989) [in Russian].

S. M. Vovk and V. F. Borulko, “Method of Minimal Duration for Finite Signals Recovery,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 34(8), 66 (1991); Radioelectron. Commun. Syst. 34(8), 49 (1991).

S. M. Vovk and V. F. Borulko, “Extraction of Measuring Background by Minimal Duration Method,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 41(10), 70 (1998); Radioelectron. Commun. Syst. 41(10), 52 (1998).

S. M. Vovk and V. F. Borulko, “Recovery of Reflectograms by Means of Extrapolation of Wideband SHF Measurements with Minimal Durations Method,” Radioelektronika. Informatika. Upravlenie, No. 1, 5 (2005).

S. M. Vovk, O. S. Antropov and V. F. Borulko, “Definition of parameters values of sinusoidal signal, distorted by unknown pulses,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 51(9), 40 (2008) [Radioelectron. Commun. Syst. 51(9), 488 (2008)].

I. I. Lyashko, V. F. Yemelyanov, and A. K. Boyarchuk, Basic Principles of Classic and Modern Mathematical Analysis (Vyssh. Shkola, Kyiv, 1988) [in Russian].

T. S. Huang (ed.), et al., Two-Dimensional Digital Signal Processing, Vol. 2: Transforms and Median Filters (Springer-Verlag, Berlin-Heidelberg-New York, 1981; Radio i Svyaz’, Moscow, 1984).

J. G. Gonzalez and G. R. Arce, “Optimality of the Myriad Filter in Practical Impulsive–Noise Environments,” IEEE Trans. Signal Process. 49, No. 2, 438 (2001).

T. C. Aysal and K. E. Barner, “Meridian Filtering for Robust Signal Processing,” IEEE Trans. Signal Process. 55, No. 8, 3949 (2007).

Published

2010-07-04

Issue

Section

Research Articles