Family of two-dimensional correcting codes on a basis of perfect binary array
DOI:
https://doi.org/10.3103/S0735272709090088Abstract
We consider a family of two-dimensional correcting E(N)-codes on a basis of perfect binary arrays H(N), and we show correcting possibilities of E(N)-codes in comparison with corresponding BCH- codes with maximal length are essentially better with regard to correction of package (correlated) errors, at that, uncorrelated errors are corrected identically.
References
- J. Jedwab and C. Mithell, “Constructing New Perfect Binary Arrays,” Electron. Lett. 24, No. 11, 650 (1988).
- P. Wild, “Infinite Families of Perfect Binary Arrays,” Electron. Lett. 24, No. 14, 845 (1988).
- M. I. Mazurkov and V. Ya. Chechelnytskyi, “The Classes of Equivalent and Generative Perfect Binary Arrays for CDMA-Technologies,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 46(5), 54 (2003); Radioelectron. Commun. Syst. 46(5), 44 (2003).
- V. Ya. Chechenitskii, “A Method for Generation of the Full Class of Perfect Binary Arrays of the Order N = 8x8,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 48(11), 65 (2005); Radioelectron. Commun. Syst. 48(11), 52 (2005).
- M. I. Mazurkov, V. Ya.Chechelnytskyi, and M. Yu. Gerasimenko, “Classes of Minimax Bi-Phase Signals Based on Perfect Binary Arrays,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 49(10), 25 (2006); Radioelectron. Commun. Syst. 49(10), 16 (2006).
- M. I. Mazurkov and V. Ya. Chechelnytskyi, “The Properties of the Full Class of Perfect Binary Arrays for 36 Elements,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 47(6), 56 (2004); Radioelectron. Commun. Syst. 47(6), 42 (2004).
- M. I. Mazurkov and M. Yu. Gerasimenko, “Fast Orthogonal Transforms Based on Perfect Binary Arrays,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 49(9), 54 (2006); Radioelectron. Commun. Syst. 49(9), 41 (2006).
- A. M. Trakhtman and V. A. Trakhtman, Basic Principles of Discrete Signals on Finite Intervals (Sov. Radio, Moscow, 1975) [in Russian].
- R. E. Blahut, Theory and Practice of Error Control Codes (Addison-Wesley, [s. l.], 1983; Mir, Moscow, 1986).
- M. I. Mazurkov, “Recurrent Algorithm of Sliding Correlation Decoding of Cyclic Codes,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 43(1), 53 (2000); Radioelectron. Commun. Syst. 43(1), 43 (2000).
Downloads
Published
2009-09-08
Issue
Section
Research Articles