Investigation of methods used in calculations of solar cell parameters
DOI:
https://doi.org/10.3103/S0735272709010038Abstract
Analytical expressions have been obtained for extracting the electrical parameters and characteristics of solar cells, including series and shunt resistances, and the saturation current. The method of Lagrange multipliers was used for computing the shape factor of the current–voltage characteristic (CVC) of solar cell. The calculation results demonstrated a satisfactory agreement with experimental data.
References
M. Lipinski and P. Panek, “Optimization of monocrystalline silicon solar cell,” Opto-electronics Review 11, No. 4, 291 (2003).
T. M. Bruton, “General trends about photovoltaics based on crystalline silicon,” Solar Energy & Solar Cells 72, 3 (2002).
E. A. Andryushin and A. P. Silin, “Physical problems of solar power engineering,” Uspekhi Fizicheskikh Nauk 161, No. 8, 129 (1991).
M. Wolf and H. Rauschenbach, “Series resistance effects on solar cell measurements,” Advanced Energy Conversion 3, 455 (1963).
J. H. Scofield, “Effects of series resistance and inductance on solar cell admittance measurements,” Energy Materials and Solar Cells 41, No. 11, 1953 (1995).
R. Lal and R. Sharan, “Shunt resistance and soft reverse characteristics of silicon diffused-junction solar cells,” Solid State Electronics 29, No. 10, 1015 (1986).
L. D. Nielsen, “Distributed series resistance effects in solar cells,” IEEE Trans. Electron Devices ED–29, No. 5, 821 (1982).
A. Rohatgi and P. Rai–Choudhury, “Design, fabrication and analysis of 17-18-percent efficient surface-passivated silicon solar cells,” IEEE Trans. Electron Devices ED–31, No. 5, 596 (1984).
A. Rohatgi and P. Rai–Choudhury, “An approach toward 20-percent efficient silicon solar cells,” IEEE Trans. Electron Devices ED–33, No. 1, 1 (1986).
A. Ortiz–Conde and F. J. Garcia Sanchez, “Approximate analytical expression for equation of ideal diode with series and shunt resistances,” Electron. Lett. 28, No. 21, 1964 (1992).
M. Abuelma’atti, “Improved approximate analytical solution for generalized diode equation,” Electron. Lett. 28, No. 6, 594 (1992).
T. A. Fjeldy, B. J. Moon, and M. Shur, “Approximate analytical solution of generalized diode equation,” IEEE Trans. Electron Devices ED–38, No. 8, 1976 (1991).
M. Сhegaar, Z. Ouennoughi, F. Guechi, and H. Langueur, “Determination of solar cells parameters under illuminated conditions,” Journal of Electron Devices 2, 17 (2003).
A. Ortiz–Conde, F. J. Garcia Sanchez, and J. Muci, “New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics,” Solar Energy Materials&Solar Cells 90, 352 (2006).
R. Eke and Ю. Oktiks, I. K. Muрla, “AS1206 tek kristal silisyum (m–Si) fotovoltaik modьlьm seri ve paralel direз deрerlerinin mevsimsel olarak deрiюimi,” Journal of Arts and Sciences Sayt. 7, 21 (2007).
H. Bayhan and S. Kavasoglu, “Exact analytical solution of the diode ideality factor of a p–n–junction device using Lambert W-function model,” Turkish Journal of Physic. 31, 7–10 (2007).
M. Chegaar, Z. Ouennohi, and F. Guechi, “Extracting the parameters of solar cells under illumination,” Vacuum 75, 367 (2004).
A. Jain and A. Kapoor, “A new approach to study organic solar cell using Lambert W-function,” Solar Energy Materials & Solar Cells 86, 197 (2005).
M. Haouari–Merbah, M. Belhamel, I. Tobias, and J. M. Ruiz, “Extraction and analysis of solar cell parameters from the illuminated current voltage curve,” Energy Materials & Solar Cells 87, 225 (2005).
Quanxijia, W. A. Anderson, E. Liu, and S. Zhang, “A novel method for evaluation the series resistance of solar cells,” Solid State Electronics 28, 807 (1988).
S. Dib, M. de la Bardonne, A. Khoury, et al., “A new method for extraction of diode parameters using a single exponential model,” Active and Passive Electron Components 22, 157 (1999).
A. Vishnoi, R. Gopal, R. Dwivedi, and S. K. Srivastava, “Distributed parameter analysis of dark I-V-characteristics of the solar cell: estimation of equivalent lumped series resistance and diode quality factor,” IEEE Proceedings 140, 155 (1993).
C. L. Garrido-Alzar, “Algorithm for extraction of solar cell parameters from I-V-curve using double exponential model,” Renewable Energy 10, 125 (1997).
J. P. Charles, M. Abdelkrim, Y. H. Muoy, and P. Mialhe, “A practical method of analysis of the current voltage characteristics of solar cells,” Solar Cells Review 4, 169 (1981).
G. L. Araujo and E. Sanchez, “A new method for experimental determination of the series resistance of a solar cell,” IEEE Trans. Electron Devices ED–29, No. 10, 1511 (1982).
N. Mwiinga, “Combinatorics of solar cell optoelectronic device parameters,” in Proc. of the 2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006)” (Bangkok, 2006), pp. 1–6.
K. Araki, “Novel equivalent circuit model and statistical analysis in parameters identification,” Solar Energy Materials & Solar Cells 75, 457 (2003).
M. Abdelkrim, J. B. Amor, M. Fathallan, and J. P. Charles, “Solar cell shape factor evaluation by the Lagrangian method,” Journal of Active and Passive Electronic Devices 1, 107 (2005).
M. A. De Blas, J. L. Torres, E. Prieto, and A. Garcia, “Selecting a suitable model for characterizing photovoltaic devices,” Renewable Energy 25, No. 3, 371 (2002).
A. Luque, G. Sala, I. Luque-Heredia, “Photovoltaic concentration at the onset of its commercial deployment,” Progress in Photovoltaics: Research and Applications 14, 413 (2006).
A. Zekry and G. Eldallal, “Effect of MS contact on the electrical behavior of solar cells,” Solid State Electronics 31, No. 1, 91 (1988).
V. I. Strikha, and S. S. Kil’chitskaya, Solar Cells Based on the Metal–Semiconductor Contact (Energoatomizdat, St. Petersburg, 1991) [in Russian].
J. C. H. Phang, D. S. H. Chan, and J. R. Philips, “Accurate analytical method for the extraction of solar cell parameters,” Electron. Lett. 20, No. 10, 406 (1984).
D. S. H. Chan, J. R. Philips, and J. C. H. Phang, “A comparative study of extraction methods for solar cell model parameters,” Solid State Electronics 29, No. 3, 329 (1986).
I. N. Bronshtein and K. A. Semendyaev, Handbook of Mathematics for Engineers and Students of Technical Colleges (Nauka, Moscow, 1980) [in Russian].
V. A. Zorich, Mathematical Analysis: Manual for Students of Colleges, Pt. 1, 4th revised ed. (MTsNMO, Moscow, 2002) [in Russian].