Simulation of wave processes in an open waveguide with diffraction-coupled radiation sources
DOI:
https://doi.org/10.3103/S0735272708110010Abstract
Electrodynamic characteristics of an open waveguide formed by two diffraction gratings with distributed radiation sources have been studied by the method of experimental simulation. Such system was shown to give a good promise for creating hardware components and amplifiers operating in the millimeter wavelength range.
References
E. M. Marshall, P. M. Philips, and J. E. Walsh, “Planar orotron experiments in millimeter wavelength band,” IEEE Trans. Plasma Sci. 16, No. 2, 199 (1998).
G. S. Vorob’ev and A. I. Tsvyk, “Devices of diffraction electronics with space-developed structures (Overview),” in Visnyk Sums’kogo derzhavnogo universytetu (SDU, Sumi, 2002), Nos. 5(38)–6(39), pp. 158–171.
F. S. Rusin, V. L. Bratman, and A. E. Fedotov, “Orotron: Prospects of its promotion to the submillimeter wavelength range,” in Sbornik Obzorov: Vakuumnaya SVCh Elektronika (2002), pp. 121–124.
A. A. Shmat’ko and E. N. Odarenko, Electronics of Microwave Frequencies (Fakt, Kharkov, 2003) [in Russian].
Generators of Diffraction Radiation (Naukova Dumka, Kiev, 1991) [in Russian, ed. by V. P. Shestopalov].
N. S. Ginzburg, N. A. Zavol’skii, V. E. Zapevalov, et al., “Nonstationary processes in orotron with diffraction radiation output,” ZhTF 70, No. 4, 99 (2000).
G. S. Vorobjov, “Electrodynamic properties of coupled quasi-optical open cavities in sources of millimeter radiation,” Laser Physics 10, No. 4, 932 (2000).
G. S. Vorobjov, A. S. Krivets, A. A. Shmatko, et al., “The Smith–Pursell Effect Amplification of the Electromagnetic Waves in an Open Waveguide with a Metal–Dielectric Layer,” Telecom. and Radioeng., No. 59 (10–12), 80 (2003).
G. Duncas, M. F. Kimmitt, T. Kormann, et al., “Smith–Purcell radiation in the sub–mm wave length region,” Int. J. Infrared and Millimeter Waves 24, No. 6, 829 (2003).
G. S. Vorobyov, M. V. Petrovsky, V. О. Zhurba, А. I. Ruban, et al., “Perspectives of Application of New Modifications of Resonant Quasi–Optical Structures in EHF Equipment and Electronics,” Telecom. and Radioeng., No. 66(20), 1839 (2007).
G. S. Vorobyov, A. I. Ruban, and A. A. Shmat’ko, “Linear theory of the nonresonant EHF amplifier with distributed interaction based on the Smith–Purcell effect,” Radioelectron. Commun. Syst. 42(6), 47 (1999).
G. S. Vorobyov, A. S. Krivets, M. V. Petrovskii, and A. I. Ruban, “Experimental simulation of wave processes in the amplifier based on the Smith–Purcell effect,” in Visnyk Sums’kogo derzhavnogo universytetu (SDU, Sumi, 2002), Nos. 5(38)–6(39), pp. 117–124.
G. S. Vorobyov, A. S. Krivets, and A. A. Shmat’ko, “The Impact of Metal-Dielectric Layer on Wave Processes in the Electrodynamic System of Amplifiers Based on Smith–Pursell Effect,” Radioelectron. Commun. Syst. 48(6), 34 (2005).
A. A. Vertii, G. S. Vorob’ev, I. V. Ivanchenko, et al., “Experimental investigations of transformation of surface waves into the bulk ones in open waveguide,” Izv. Vyssh. Uchebn. Zaved., Radiofizika 31, No. 6, 1242 (1988).
G. S. Vorobyov, A. S. Krivets, M. V. Petrovskii, and A. A. Shmat’ko, “Electrodynamic characteristics of the open waveguide with diffraction-coupled radiation sources,” in Proceedings of 15th International Crimean Conference “Microwave equipment and telecommunications technologies,” Sevastopol, 2005 (Veber, Sevastopol, 2005), pp. 263–264.
G. S. Vorobyov, “Wave simulation of the Cherenkov and diffraction radiation in the space-limited metal-dielectric structures,” Radiotekhnika, No. 116, 12 (2000).
Submillimeter Wave Technology (Sov. Radio, Moscow, 1969) [in Russian, ed. by R. A. Valitov].
V. P. Shestopalov, Physical Foundations of the Millimetre and Submillimeter Technology (Naukova Dumka, Kyiv, 1985) [in Russian].
G. S. Vorobyov, A. V. Nesterenko, A. I. Tsvyk, et al., “Investigation of physical processes of interaction between the electron flow and diffracted field,” Izv. Vyssh. Uchebn. Zaved., Radiofizika 31, No. 2, 805 (1988).