Gyrodevices as power sources of electromagnetic waves in the microwave band
DOI:
https://doi.org/10.3103/S0735272708010020Abstract
The evolution of gyrodevices (generators and amplifiers) where curvilinear electron beams interact with non-slow electromagnetic waves has been reviewed. The material presented covers stages of the development of gyrodevices during the 50 years from the time of their conception till the present time when devices of this class have been qualified as the most powerful VD in the millimeter wave band.
References
Kleinwachter, “Eine Wanderfeldrohre oh,e Verzogerungleftung,” ETA 24, 714 (1951).
S. I. Tetel’baum, “About the Definition of Phase Velocity of a Sequence of Particles,” DAN URSR, No. 1, 31 (1954), “About One Case of Movement of Electric Charges in Electromagnetic Field,” DAN URSR, No. 1 (1953).
S. I. Tetel’baum, SU Patent No. 113100 (26 January 1955).
S. I. Tetel’baum, “Phasochronous Backward Wave Generator,” Radiotekh. Elektron. 3, No. 2, 705 (1957).
K. Ya. Lizhdvoi, “Experimental Investigations of Non-Slow Backward Wave Generator,” Radiotekh. Elektron. 3, No. 1 (1959).
R. O. Twiss, “Radiation Transfer and Possibility of Negative Absorption in Radio Astronomy,” Austr. J. of Phys. 11, No. 4, 564 (1958).
A. V. Gaponov, “Interaction of Non-Straight Electron Beams with Electromagnetic Waves in Transmission Lines,” Izv. Vyssh. Uchebn. Zaved., Radiofizika 2, No. 3, 450; 2, No. 5, 836 (1959).
A. V. Gaponov, “Excitation of the Transmission Line by a Non-Straight Electron Beam,” Izv. Vyssh. Uchebn. Zaved., Radiofizika 2, No. 3, 443 (1959).
J. Schneider, “Stimulated Emission of Radiation by Relativistic Electrons in a Magnetic Field,” Phys. Rev. Letters 2, No. 12, 504 (1959).
R. H. Pantel, “Electron Beam Interaction with Fast Waves,” in Proceedings Symp. on Millimeter Waves (Polytechnic Press, N.Y., 1959), 9, p. 301; “Backward–Wave Oscillations in an Unloaded Guide,” in IRE (1959), 47, No. 6, p. 1146.
A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, “Induced Radiation of Excited Classical Generators and Its Use in High-Frequency Electronics,” Izv. Vyssh. Uchebn. Zaved., Radiofizika 2, Nos. 9–10, 836 (1967).
A. V. Gaponov, A. L. Gol’denberg, M. I. Petelin, and V. K. Yulpatov,UAPatent No. 223931 (25 March 1976).
V. A. Flyagin, A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, “The Gyrotron,” IEEE Trans. Microwave Theory Tech. 25, No. 6, 514 (1977).
A. Kuraev, High-Power Microwave Devices. Techniques for Analysis and Optimization of Parameters (Radio i Svyaz’, Moscow, 1986) [in Russian].
V. P. Taranenko, V. N. Glushchenko, S. V. Koshevaya, et al., “The Impact of Velocity Spread of Electrons in Polyhelical Electron Flows on the Starting Current and Efficiency of Gyrotrons,” Elektronnaya tekhnika. Seriya 1. Elektronika SVCh, No. 12, 47 (1974).
Sh. E. Tsimring, “On the Spread of Velocities of Electrons in Helical Beams,” Izv. Vyssh. Uchebn. Zaved., Radiofizika XV, No. 8, 1247 (1972).
A. L. Gol’denberg and M. I. Petelin, “Formation of Helical Electron Beams in Adiabatic Guns,” Izv. Vyssh. Uchebn. Zaved., Radiofizika XVI, No. 1, 141 (1973).
M. Botton, T. M. Antonsen, B. Levush, et al., “MAGY: A Time Dependent Code for Simulation of Slow and Fast Microwave Sources,” IEEE Trans. Plasma Sci. 26, 882 (1998).
K. E. Kreischer, T. L. Grimm, W. C. Guss, et al., “Experimental Study of High Frequency Megawatt Gyrotron Gnerator,” Phys. Fluids B2, 640 (1990).
G. N. Rapoport, “Waveguide Excitation by an Electron Beam with Periodically Changing Trajectories,” Radiotekh. Elektron. V, No. 4, 649 (1960).
A. Vainshtein, Electromagnetic Waves (Radio i Svyaz’, Moscow, 1988).
A. V. Gaponov, Relativistic Dispersion Equation for Waveguide Systems with Helical Electron Flows,” Izv. Vyssh. Uchebn. Zaved., Radiofizika IV, No. 3, 543 (1961).
P. L. Kapitsa, High Power Electronics (Izd. AN SSSR, Moscow, 1962) [in Russian].
V. A. Zhurakhovskii, Nonlinear Oscillations of Electrons in Magnetically Controlled Flows (Naukova Dumka, Kyiv, 1972) [in Russian].
G. N. Rapoport, A. K. Nemak, and V. A. Zhurakhovskii, “Interaction of a Helical Electron Flow with the Field of Fast Electromagnetic Wave at not Small Signal Levels,” Voprosy Radioelektroniki. Ser. 1. Elektronika, No. 11, 27 (1964).
G. N. Rapoport, V. A. Zhurakhovskii, S. V. Koshevaya, and T. V. Gryaznova, “Calculations of the Efficiency and Frequency Characteristics of Cyclotron Generators at Harmonics of Gyrofrequency,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 10(11), 996 (1967).
G. N. Rapoport, A. K. Nemak, and V. A. Zhurakhovskii, “Interaction of a Helical Electron Flows with Intensive Electromagnetic Fields of Cavities on Harmonics of Gyrofrequency,” Radiotekh. Elektron. 12, No. 4, 633 (1967).
G. S. Nusinovich and R. E. Erm, “The Efficiency of MCR-Monotron with Gaussian Longitudinal Distribution of High-Frequency Field,” Elektronnaya tekhnika. Seriya 1. Elektronika SVCh, No. 8, 55 (1972).
I. S. Kovalev, A. A. Kuraev, E. M. Demidovich, and F. G. Shevchenko, “Optimal, in Terms of the Efficiency, Distribution of the High-Frequency Electrical Field in a Gyromonotron,” DAN BSSR 17, No. 4, 320 (1973).
Yu. V. Bykov and A. L. Gol’denberg, “The Impact of a Cavity Profile on the Maximum Power of Gyrotron,” Izv. Vyssh. Uchebn. Zaved., Radiofizika 18, No. 7, 1066 (1975).
T. A. Gryaznova, S. V. Koshevaya, and G. N. Rapoport, “Investigations of a Possible Increase of the Efficiency of MCR-Devices by the Phase Technique,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 12(9), 998 (1969).
V. N. Glushenko, S. V. Koshevaya, and V. A. Prus, “Enhancing the Gyrotron Efficiency on the Basis of Gyroresonance by Correcting the Magnetostatic Field Distribution,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 13(1), 12 (1970).
K. L. Felch, B. G. Danly, H. R. Jory, et al., “Characteristics and Applications of Fast–Wave Gyrodevices,” Proceedings of the IEEE, No. 5, 752 (1999).
I. V. Akalovskii, SU Patent (14 June 1952).
G. S. Park, J. J. Choi, S. Y. Park, et al., “Status Report on a 110 GHz, 1MWCWGyrotron with a CVD Diamond Window,” in Proceedings 23rd Int. Conf. Infrared and millimeter waves, September, 1998, pp. 367–368.
P. Calame and D. K. Abe, “Application of Advanced Materials Technologies to Vacuum Electronic Devices,” Proceedings of IEEE 87, No. 5, 840 (1999).
Cai, T. M. Antonsen, G. Saraph, and B. Levush, “Multifrequency Theory of High Power Gyrotron Generators,” Int. J. Electron. 72, No. 5, 759 (1992).
S. Nusinovich, “Mode Interaction in Gyrotrons,” Int. J. Electron. 51, No. 10, 457 (1981).
G. S. Nusinovich, A. B. Pavel’ev, and V. I. Khizhnyak, “Restrictions in Choosing Optimal Parameters of Gyrotrons Caused by Conditions of Mode Competition,” Sov. J. Commun. Tech. Electron. 33, 114 (1989).
D. Dialetis and K. Chu, Mode Competition and Stability Analysis of Gyrotron Generator. Infrared and Millimeter Waves, ed. by K. J. Button (N.Y., 1983).
V. E. Zapevalov, S. A. Malygin, V. G. Pavel’ev, and Sh. E. Tsimring, “Gyrotrons Built on Coupled Cavities with Mode Transformation,” Izv. Vyssh. Uchebn. Zaved., Radiofizika 27, No. 9, 1194 (1984).
T. A. Hargreaves, K. J. Kim, J. H. McAdoo, et al., “Experimental Study of a Single–Mode Quasi–Optical Gyrotron,” Int. J. Electron. 72, No. 6, 977 (1992).
A. V. Gaponov, A. L. Gol’denberg, G. N. Rapoport, and V. K. Yulpatov,UAPatent No. 273001 (15 May 1975).
J. M. Wachtel and J. L. Hirshfield, “Interference Beats in Pulse–Stimulated Cyclotron Radiation,” Phys. Rev. Lett. 17, 348 (1966).
G. N. Rapoport and S. V. Koshevaya, Nonlinear Analysis of Gyroresonance Klystron (Trudy NTORiE im. Popova, USSR, Moscow, 1968) [in Russian].
Antakov, E. V. Zasypkin, E. V. Sokolov, and V. K. Yulpatov, “35 GHz Radar Gyroklystrons,” in Proceedings 18th Int. Conf. Infrared and millimeter waves, September, 1993, pp. 338–339.
M. Thumm, “State-of-the-art High Power Gyrodevices and Free Electron Masers. Update 2003, 2004,” February, FZKA 6957. See also in Novosti SVCh-tekhniki (2004), Nos. 9, 10 and in Sovremennyi uroven’ moshchnykh giropriborov (FGUP “NPP Istok”, Fryazino, Moskovskaya obl.), pp. 16–20.
T. Lin, K. R. Chu, C. C. Lin, et al., “Marginal Stability Design Criterion for Gyro–TWT’s and Comparison of Fundamental with Second Harmonic Operation,” Int. J. Electron. 72, No. 5, 873 (1992).
R. Chu, Y. Y. Lau, L. R. Bernett, and V. L. Granatstein, “Theory of a Wide–Band Distributed Gyrotron–Traveling–Wave Amplifier,” IEEE Trans. Electron Devices ED–28, No. 7, 866 (1981).
G. S. Park, S. Y. Park, R. H. Kyser, et al., “Broad–Band Operation of a Ka–Band Tapered Gyro–TW Amplifier,” IEEE Trans. Plasma Sci. 22, No. 10, 536 (1994).
G. S. Park, J. J. Choi, S. Y. Park, et al., “Experimental Investigation of Two–Staged Tapered Gyro–Traveling Wave Tube Amplifier,” in Proceedings 19th Int. Conf. Infrared and millimeter waves, October, 1994, pp. 417–418.
I. I. Antakov, V. A. Zhurakhovskii, and G. N. Rapoport, SU Patent No. 224713 (29 june 1967).
R. Chu, L. R. Barnett, W. K. Lau, et al., “A Wide–Band Millimeter–Wave Gyrotron Traveling Wave Amplifier,” IEEE Trans. Electron Devices 37, No. 6, 1557 (1990).
S. V. Vyrovoi and G. N. Rapoport, “An Investigation of the Output Stage of Gyrotwystron,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 16(10), 96 (1973).
S. V. Vyrovoi and G. N. Rapoport, “Frequency Band of the Output Stage of Gyrotwystron,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 17(9), 96 (1974).
M. Blank, G. Danly, and B. Levush, “Experimental Demonstration of W–Band Gyro–Amplifiers with Improved Performance,” in Proceedings 23rd Int. Conf. Infrared and millimeter waves, September, 1998, pp. 26–27.
M. Blank, E. V. Zasypkin, and B. Levush, “An Investigation of X–Band Gyrotwystron Amplifiers,” IEEE Trans. Plasma Sci. 26, No. 6, 577 (1998).