Fast orthogonal transforms based on perfect binary arrays

Authors

  • Michael I. Mazurkov Odessa National Polytechnic University, Ukraine
  • M. Yu. Gerasimenko Odessa National Polytechnic University, Ukraine

DOI:

https://doi.org/10.3103/S0735272706090068

Abstract

A new rule is suggested for construction of a new class of fast orthogonal transformations —matrices C, orders n = (2k)2 and n = (3∙2k)2, k = 1, 2, ..., built with the aid of perfect binary arrays of the orders N = 2k or N = 3∙2k. It is shown that binary orthogonal matrices C possess a practically attractive property of multi-purpose cyclic shift (N-shift), which permits to create an effective procedure of the sliding method for calculation of the transform coefficients.

References

AHMED, N.; RAO, K.R. Orthogonal Transforms for Digital Signal Processing. Springer-Verlag, 1975.

GEPKO, I.A. "Synthesis of perfect binary arrays," Izv. VUZ. Radioelektronika, v.41, n.6, p.13-21, 1998.

MAZURKOV, M.I.; CHECHELNYTSKYI, V.Y. "Classes of equivalent and generating perfect binary arrays for the CDMA-technologies," Izv. VUZ. Radioelektronika, v.46, n.5, p.54-63, 2003.

TRAKHTMAN, A.M.; TRAKHTMAN, V.A. Foundations of the Theory of Discrete Signals on Finite Intervals [in Russian]. Moscow: Sov. Radio, 1975.

D’YAKONOV, V.P. MATLAB 6/6.1/6.5 + Simulink in Mathematics and Simulation — Full User’s Manual [in Russian]. Moscow: SOLON-Press, 2003.

CHERNYKH, I.V. SIMULINK — A Medium for Technical Applications [in Russian, ed. by V. G. Potyomkin]. Moscow: DIALOG-MIFI, 2003.

MAZURKOV, M.I. "Rekurrentnyi algoritm skolziashchego korreliatcionnogo dekodirovaniia tciclicheskikh kodov," Izv. VUZ. Radioelektronika, v.43, n.1, p.53-59, 2000.

MAZURKOV, M.I.; CHECHELNYTSKYI, V.Y. "The properties of the full class of perfect binary arrays for 36 elements," Radioelectron. Commun. Syst., v.47, n.6, p.39-44, 2004. URI: http://radioelektronika.org/article/view/S073527270406007X.