Cumulant models of linear prediction of the processes of autoregression of the sliding mean

Authors

  • V. A. Tikhonov Kharkiv National University of Radioelectronics, Ukraine

DOI:

https://doi.org/10.3103/S0735272705080091

Abstract

A new type of difference equations is suggested for generalized cumulant models of autoregression of the sliding mean, when the model parameters are calculated by the cumulant functions. Particularly, equations are derived for calculating the parameters of cumulant models of linear prediction based on cumulant functions of the second, third, and fourth order. Several examples are given illustrating generation of the cumulant models of autoregression of the sliding mean of the third and fourth rank.

References

MARPLE, S.L., Jr. Digital Spectral Analysis and Its Applications [Russian translation]. Moscow: Mir, 1990.

QURESHI, S.U.H. Adaptive equalization. Proc. IEEE, v.73, n.9, p.1349-1387, 1985. DOI: https://doi.org/10.1109/PROC.1985.13298.

HAYKIN, S. Radar signal processing. IEEE ASSP Magazine, v.2, n.2, p.2-18, 1985. DOI: https://doi.org/10.1109/MASSP.1985.1163737.

KOROTAYEV, G.A. Zarubezhnaya Radioelektronika, n.3, p.57-68, 1996.

KUNCHENKO, Y.P. Nonlinear Estimation of Parameters of Non-Gaussian Radio-Engineering Signals [in Russian]. Kiev: Vyshcha Shkola, 1987.

VALEYEV, V.G.; DANILOV, V.A. Radioelectron. Commun. Syst., v.34, n.7, p.20, 1991.

MALAKHOV, A.N. Cumulant Analysis of Random Non-Gaussian Processes and of Their Transforms [in Russian]. Moscow: Sov. Radio, 1978.

ZHURBENKO, I.G. Analysis of Stationary and Uniform Random Systems [in Russian]. Moscow: Izd. Mosc. Un-ta, 1987.

BRILLINGER, D.R. The Time Series — Data Processing and Theory [Russian translation]. Moscow: Mir, 1980.

SHELUKHIN, O.I.; BELYAYEV, I.V. Non-Gaussian Processes [in Russian]. Sent-Petersburg: Politekhnika, 1992.

Published

2005-08-09

Issue

Section

Research Articles