Fast algorithms for simulation of symmetric stable random quantities and processes

Authors

  • S. N. Moiseyev Voronezh State University, Russian Federation

DOI:

https://doi.org/10.3103/S0735272704070040

Abstract

A limit representation has been obtained for a uniform symmetric stable process with independent increments in the form of a sum of independent Wiener’s and purely jump-like generalized Gaussian processes. Simple and speedy algorithms are developed for simulation of symmetric stable random quantities and processes. The algorithms can be easily implemented in a computer.

References

MOISEYEV, S.N. "O narushenii centralnoi predelnoi teoremy dlia elektronnoi koncentratcii sloia Es iz-za ee raspredeleniia po zakonu Koshi," Geomagnetizm i Aeronomiya, v.38, n.6, p.181-186, 1998.

MANDELBROT, B.B. "The Pareto-Levy law and the distribution of income," Int. Economic Rev., v.1, n.2, p.79-106, 1960. DOI: http://doi.org/10.2307/2525289.

MOISEYEV, S.N. " Mehanizm obrazovaniia i veroiatnostnoe raspredelenie maksimalnoi elektronnoi koncentratcii sloia Es," Geomagnetizm i Aeronomiya, v.37, n.3, p.107-113, 1997.

ZOLOTARYOV, V.M. Unidimensional Stable Distributions [in Russian]. Moscow: Nauka, 1983.

BOROVKOV, A.A. The Course of Probability Theory [in Russian]. Moscow: Nauka, 1972.

PARAYEV, Y.I. Foundations of Statistical Dynamics of the Control and Filtering Processes [in Russian]. Moscow: Sov. Radio, 1976.

KOROLYUK, V.S.; PORTENKO, N.I.; SKOROKHOD, A.V.; TURBIN, A.F. Handbook of Probability and Mathematical Statistics [in Russian]. Moscow: Nauka, 1985.

PUGACHOV, V.S.; SINITSYN, I.N. Stochastic Differential Systems — Analysis and Filtering [in Russian]. Moscow: Nauka, 1990.

SHIRYAYEV, A.N. Probability [in Russian]. Moscow: Nauka, 1980.

YERMAKOV, S.M.; MIKHAILOV, G.A. The Course of Statistical Simulation [in Russian]. Moscow: Nauka, 1976.

BYKOV, V.V. Digital Modeling in Statistical Radio-Engineering [in Russian]. Moscow: Sov. Radio, 1971.

Published

2004-07-04

Issue

Section

Research Articles