The method of induced magnetomotive forces for cavity-backed slot radiators and coupling slots

Authors

DOI:

https://doi.org/10.3103/S0735272704010029

Abstract

The method of induced magnetomotive forces is used for solving the problem of magnetic current distribution in an antenna-waveguide structure of the “coupling slot in waveguide wall — rectangular resonator — radiating slot” type for the cases of infinite and semi-infinite rectangular waveguides. The numerical and experimental investigations of such systems are performed and the plotted electrodynamic characteristics are presented.

References

CHEN, T.S. " Waveguide resonant-iris filters with very wide passband and stopbands," Int. J. Electronics, v.21, n.5, p.401-424, 1966. DOI: https://doi.org/10.1080/00207216608937922.

KIRILENKO, A.A.; RUD’, L.A.; SENKEVICH, S.L.; TKACHENKO, V.I. "Electrodynamical synthesis and analysis of broadband waveguide filters on the resonant diaphragms," Izvestiya VUZ. Radioelektronika, v.40, n.11, p.54-62, 1997.

SOUTHWORTH, G.C. Principles and Applications of Waveguide Transmission. New-York, 1950.

FEL’DSHTEIN, A.L.; YAVICH, L.R.; SMIRNOV, V.P. Handbook of Waveguide Equipment Elements [in Russian]. Moscow: Sov. Radio, 1967.

VAN SHAIK, H. "The performance of an iris-loaded planar phased-array antenna of rectangular waveguides with an external dielectric sheet," IEEE Trans. Antennas Propag., v.26, n.3, p.413-419, 1978. DOI: https://doi.org/10.1109/TAP.1978.1141860.

GOROBETS, N.N.; ZHIRONKINA, A.V.; ZDOROV, A.G.; YATSUK, L.P. Antenny, n.27, p.159-166, 1979.

MAZZARELLA G.; MONTISCI, G. "Accurate characterization of the interaction between coupling slots and waveguide bends in waveguide slot arrays," IEEE Trans. Microwave Theory Tech., v.48, n.7, p.1154-1157, 2000. DOI: https://doi.org/10.1109/22.848500.

SOTO, P.; BORIA, V.E.; CATALA-CIVERA, J.M.; CHOUAIB, N.; GUGLIELMI, M.; GIMENO, B. "Analysis, design, and experimental verification of microwave filters for safety issues in open-ended waveguide systems," IEEE Trans. Microwave Theory Tech., v.48, n.11, p.2133-2140, 2000. DOI: https://doi.org/10.1109/22.884205.

LONG, S. "Experimental study of the impedance of cavity-backed slot antennas," IEEE Trans. Antennas Propag., v.23, n.1, p.1-7, 1975. DOI: https://doi.org/10.1109/TAP.1975.1140998.

GRINEV, A.Y.; KOTOV, Y.V. "Computer Aided Analysis and Partial Parametric Synthesis of Slot Cavity Antenna Structures," Izvestiya VUZ. Radioelektronika, v.21, n.2, p.30-35, 1978.

LEE, J.-Y.; HORNG, T.-S.; ALEXOPOULOS, N.G. "Analysis of cavity-backed aperture antennas with a dielectric overlay," IEEE Trans. Antennas Propag., v.42, n.11, p.1556-1562, 1994. DOI: https://doi.org/10.1109/8.362779.

KATRICH, V.A.; NESTERENKO, M.V.; KHIZHNYAK, N.A. Zarubezhnaya Radioelektronika. Uspekhi Sovremennoy Radioelektroniki, n.12, p.15-25, 2002.

FEL’D, Y.N.; BENENSON, S.L. Antenna-Feeder Devices. Part 2 [in Russian]. Moscow: Izd-vo VVIA im. Zhukovskogo, 1959.

GARB, K.L.; LEVINSON, I.B.; FRIDBERG, P.S. Radiotekhnika i Elektronika, v.13, n.12, p.2152-2161, 1968.

KATRICH, V.A.; NESTERENKO, M.V.; YATSUK, L.P.; BERDNIK, S.L. "Method of induced magnetomotive forces for electrically long slots in waveguide walls," Izvestiya VUZ. Radioelektronika, v.45, n.12, p.14-22, 2002.

Published

2008-01-12

Issue

Section

Research Articles