Sparseness of natural oscillations spectrum for double-mirror open resonator using mode-selective scatterers on one of mirrors surface


  • Vadym L. Pazynin O. Ya. Usikov Institute for Radiophysics and Electronics of National Academy of Science of Ukraine, Kharkiv, Ukraine



open resonator, eigen mode, spectrum sparseness


The effective procedure for spectrum sparseness of natural oscillations of double-mirror open resonators (OR) is proposed. It is based on the placement of scatterers with a specially determined geometric profile on one of the mirrors surface, forming the single mode-selective reflector. This procedure is used to synthesize two profiles of these scatterers for OR with flat and cylindrical mirrors. We propose the rectangular metal bar and the echelette-corner reflector with three rectangular steps symmetric to the plane of resonator symmetry. These scatterers placed on the flat OR mirror provide a minimal effect on the spatial-frequency characteristics of the operating natural oscillation, and significantly reduce the Q-factor of most of the rest oscillations. The spectral characteristics of the OR with these inserts are calculated for excitation by the current source and the eigen mode of a supply waveguide. The possibility of significant decrease in the number of OR natural oscillations is shown, in comparison with the resonator without these scatterers. The effect of increasing the radiation Q-factor of operating oscillation is observed using the echelette-corner scatterer. The technique used to determine the scatterers geometric profile is suitable for spectrum sparseness of the OR of arbitrary dimensions with mirrors of any shapes.


V. P. Shestopalov, Diffraction Electronics, [in Russian]. Kharkiv: Vyssh. Shkola, 1976.

T. Idehara, S. P. Sabchevski, M. Glyavin, S. Mitsudo, “The gyrotrons as promising radiation sources for THz sensing and imaging,” Appl. Sci., vol. 10, no. 3, p. 980, 2020, doi:

O. A. Ivanov et al., “Active quasioptical Ka-band RF pulse compressor switched by a diffraction grating,” Phys. Rev. Spec. Top. - Accel. Beams, vol. 12, no. 993501, 2009, doi:

Y. Y. Danilov, S. V. Kuzikov, V. G. Pavel’ev, Y. I. Koshurinov, “Microwave pulses compressed in a barrel-shaped resonator with screw corrugation,” Tech. Phys. Lett., vol. 27, no. 3, pp. 245–247, 2001, doi:

N. Burambayeva, S. Sautbekov, Y. K. Sirenko, A. Vertiy, “Compact open resonator as the power-storage unit for a microwave compressor,” Telecommun. Radio Eng., vol. 74, no. 1, pp. 29–40, 2015, doi:

A. A. Vertii, I. V. Ivanchenko, N. A. Popenko, V. P. Shestopalov, “Diffractive selection in screened quasioptical resonators,” Radiophys. Quantum Electron., vol. 31, no. 8, pp. 691–698, 1988, doi:

H. Fouckhardt, A.-K. Kleinschmidt, J. Strassner, C. Doering, “1D confocal broad area semiconductor lasers (confocal BALs) for fundamental transverse mode selection (TMS#0),” Adv. Optoelectron., vol. 2019, pp. 1–7, 2019, doi:

A. V. Raskhodchikov, S. A. Scherbak, N. V. Kryzhanovskaya, A. E. Zhukov, A. A. Lipovskii, “Dielectric surrounding decimates eigenmodes of microdisk optical resonators,” J. Phys. Conf. Ser., vol. 112451031, 2018, doi:

S. G. Ilchenko, R. A. Lymarenko, V. B. Taranenko, N. Kyzas, A. Belosludtsev, “Multilayer dielectric structure for mode selection of wide-aperture laser,” in 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL), 2019, pp. 1–4, doi:

D. K. Serkland et al., “Mode selection and tuning of single-frequency short-cavity VECSELs,” in Vertical-Cavity Surface-Emitting Lasers XXII, 2018, p. 5, doi:

O. P. Ostroukh, R. A. Lymarenko, V. B. Taranenko, “Model of wide-aperture laser with intracavity diffractive element,” in 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL), 2019, pp. 188–191, doi:

N. Ginzburg, A. Sergeev, E. Kocharovskaya, A. Malkin, E. Egorova, V. Zaslavsky, “Diffraction mode selection in planar lasers with Bragg resonators,” ITM Web Conf., vol. 306012, 2019, doi:

N. S. Ginzburg, A. S. Sergeev, E. R. Kocharovskaya, A. M. Malkin, E. D. Egorova, V. Y. Zaslavsky, “Diffraction mode selection in planar Bragg resonators of optical and microwave wavelength ranges,” Phys. Lett. A, vol. 384, no. 10, p. 126219, 2020, doi:

N. S. Ginzburg, A. S. Sergeev, E. R. Kocharovskaya, A. M. Malkin, E. D. Egorova, V. Y. Zaslavsky, “Diffraction-mode selection in heterolasers with planar Bragg structures,” Semiconductors, vol. 54, no. 9, pp. 1161–1165, 2020, doi:

O. Di Monaco, W. Daniau, I. Lajoie, Y. Gruson, M. Chaubet, V. Giordano, “Mode selection for a whispering gallery mode resonator,” Electron. Lett., vol. 32, no. 7, p. 669, 1996, doi:

L. G. Velychko, Y. K. Sirenko, “Controlled changes in spectra of open quasi-optical resonators,” Prog. Electromagn. Res. B, vol. 16, pp. 85–105, 2009, doi:

S. P. Anokhov, T. Y. Marusiy, M. S. Soskin, Reconfigurable Lasers, [in Russian]. Moscow: Radio i Svyaz’, 1982.

Y. K. Sirenko, O. V. Chistyakova, “Selection mechanism in open resonator with dif-fraction arrays and principles of creating essentially single-mode structures,” Kharkov, 1983.

V. P. Shestopalov, Y. K. Sirenko, Dynamic Theory of Arrays, [in Russian]. Kiev: Naukova Dumka, 1989.

O. I. Belous, A. A. Kirilenko, A. I. Fisun, “Quasi frequency spectra of an open resonator with the comb grid,” Izv. VUZ Radioelektronika, vol. 41, no. 4, pp. 8–13, 1998.

C. A. Curwen, J. L. Reno, B. S. Williams, “Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL,” Nat. Photonics, vol. 13, no. 12, pp. 855–859, 2019, doi:

Y. K. Sirenko, N. P. Yashina, S. Ström, Modeling and Analysis of Transient Processes in Open Resonant Structures, vol. 122. New York, NY: Springer New York, 2007, doi:

S. N. Vlasov, E. V. Koposova, A. B. Pavel’ev, V. I. Khizhnyak, “Gyrotrons with echelette resonators,” Radiophys. Quantum Electron., vol. 39, no. 6, pp. 458–462, 1996, doi:

V. E. Zapevalov, S. N. Vlasov, E. V. Koposova, A. N. Kuftin, A. B. Paveliev, N. A. Zavolsky, “Various types of echelette resonators for gyrotrons,” EPJ Web Conf., vol. 1951022, 2018, doi:

E. L. Kosarev, “Open resonator with echelette array,” High-power Electron., no. 5, pp. 93–104, 1968, uri:

V. L. Pazynin, “A model of two-stage active compressor of microwave-pulses with open two-mirror storage resonator in the first stage,” Phys. Bases Instrum., vol. 9, no. 3, pp. 14–27, 2020, doi:

O. Shafalyuk, P. D. Smith, L. G. Velychko, “Rigorous substantiation of the method of exact absorbing conditions in time-domain analysis of open electrodynamic structures,” Prog. Electromagn. Res. B, vol. 41, pp. 231–249, 2012, doi:

Y. Sirenko, L. Velychko, Eds., Electromagnetic Waves in Complex Systems, vol. 91. Cham: Springer International Publishing, 2016, doi:

V. L. Pazynin, K. Y. Sirenko, Y. K. Sirenko, N. P. Yashina, “Exact absorbing conditions for the initial boundary value problem of computational electrodynamics. Review,” Phys. Bases Instrum., vol. 6, no. 4, pp. 2–33, 2017, doi:

A. Taflove, S. C. Hagness, Computational Electrodynamics. Boston: Artech House, 2005, uri:

V. L. Pazynin, “Strict electromagnetic model of accumulation resonator of an active microwave power compressor,” Phys. Bases Instrum., vol. 7, no. 3, pp. 86–107, 2018, doi:

V. F. Kravchenko, Y. K. Sirenko, K. Y. Sirenko, Transformation and Emission of Electromagnetic Waves by Open Resonant Structures. Modeling and Analysis of Transitional and Steady-State Processes, [in Russian]. Moscow: Fizmatlit, 2011.

V. L. Pazynin, “Model and analysis of processes of passive and active compression of electro-magnetic impulses of microchip and optical ranges,” Kharkiv, 2019.

O. Svelto, Principles of Lasers. Boston, MA: Springer, 1976, doi:

Y. K. Sirenko, Modeling and Analysis of Transient Processes in Open Periodic, Waveguide and Compact Resonators, [in Russian]. Kharkov: Edena, 2003.

P. N. Melezhik, V. S. Miroshnichenko, Y. B. Senkevich, “An open resonator with two conductive cylindrical insertions,” Telecommun. Radio Eng., vol. 65, no. 4, pp. 293–304, 2006, doi:

N. A. Semenov, Technical Electrodynamics. Study guide for universities, [in Russian]. Moscow: Svyaz, 1973.

A. I. Fisun, V. I. Tkachenko, O. I. Belous, A. A. Kirilenko, “Excitation of oscillations in open resonators with echelette and angle-echelette mirrors,” J. Commun. Technol. Electron., vol. 45, no. 5, pp. 576–583, 2000, uri:

O. I. Belous, A. A. Kirilenko, A. I. Fisun, “Quasioptical resonant systems for millimeter and submillimeter wave solid-state electronic devices,” Radio Phys. Electron., vol. 13, pp. 377–390, 2008, uri:

O. Bilous, A. Kirilenko, M. Natarov, S. Sirenko, A. Fisun, A. Shubny, “Quasioptical millimeter wave solid-state generator,” Radio Phys. Electron., vol. 23, no. 4, pp. 67–94, 2018, doi:

E. I. Nefedov, E. N. Privalov, “Single-frequency oscillations in coaxial resonators with ‘non-focusing’ mirrors,” Reports USSR, vol. 307, no. 4, pp. 872–876, 1989.

I. K. Kuzmichev, P. N. Melezhik, A. Y. Poyedinchuk, “An open resonator for physical studies,” Int. J. Infrared Millim. Waves, vol. 27, no. 6, pp. 857–869, 2007, doi:

Electric field component distribution at oscillation frequency





Research Articles