Temperature stable radiation-resistant current reference based on FET





JFET, MOSFET, temperature coefficient of reference current, current reference, radiation resistance


The influence of temperature and ionized radiation on the properties of current stabilizers, based on JFETs with p-n-junction as a gate and MOSFETs in saturation mode at two-pole connecting when the gate and source are closed, is experimentally investigated. It is shown that current temperature coefficient of the JFET is negative, and the one of the second type is positive. Connecting a stabilizing resistor of a proper value to the FET source circuit allows us to reduce the temperature changes in the output current of stabilizer at one FET to a minimum for both JFET with p-n-junction and MOSFET. However, in this method of temperature stabilization of output current, the output power of stabilizer is significantly reduced. For the first time the suggested design of the current reference operates on the principle of compensation of external influences on device, composed of two different types of FET with inverse reaction to this influence. It was experimentally proved that by parallel connection of such transistor pairs, it is possible to get a stable current reference generator in a wide temperature range. Moreover, experiments have shown that if a MOSFET with small drain saturation current is selected for the current reference, then the effect of ionizing radiation on the entire device will be compensated, since after radiation the current through such MOSFET will increase, and the current through JFET will decrease.


S. Pettinato, A. Orsini, S. Salvatori, “Compact current reference circuits with low temperature drift and high compliance voltage,” Sensors, vol. 20, no. 15, p. 4180, 2020, doi: https://doi.org/10.3390/s20154180.

R. Carvalho et al., “A low-power CMOS current reference for piezoelectric energy harvesters,” IEEE Trans. Electron Devices, vol. 67, no. 8, pp. 3403–3410, 2020, doi: https://doi.org/10.1109/TED.2020.2998095.

D. van Treeck et al., “Electroluminescence and current–voltage measurements of single-(In,Ga)N/GaN-nanowire light-emitting diodes in a nanowire ensemble,” Beilstein J. Nanotechnol., vol. 10, pp. 1177–1187, 2019, doi: https://doi.org/10.3762/bjnano.10.117.

C. Palacios-Berraquero, “Atomically-thin quantum light emitting diodes,” in Quantum Confined Excitons in 2-Dimensional Materials. Springer Theses, Cham: Springer, 2018, pp. 71–89.

M. H. Nakhodkin, F. F. Syzov, Elements of Functional Electronics, [in Russian]. Kyiv: Ukr. INTEI, 2002.

D. Osipov, S. Paul, “Compact extended industrial range CMOS current references,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 66, no. 6, pp. 1998–2006, 2019, doi: https://doi.org/10.1109/TCSI.2019.2892182.

D. Osipov, S. Paul, “Temperature-compensated $beta$-multiplier current reference circuit,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 64, no. 10, pp. 1162–1166, 2017, doi: https://doi.org/10.1109/TCSII.2016.2634779.

Y. Wenger, B. Meinerzhagen, “A stable CMOS current reference based on the ZTC operating point,” in 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), 2017, pp. 273–276, doi: https://doi.org/10.1109/PRIME.2017.7974160.

D. Cordova, A. C. de Oliveira, P. Toledo, H. Klimach, S. Bampi, E. Fabris, “A sub-1 V, nanopower, ZTC based zero-VT temperature-compensated current reference,” in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 2017, pp. 1–4, doi: https://doi.org/10.1109/ISCAS.2017.8050289.

K. Kondo, H. Tamura, K. Tanno, “High-PSRR, low-voltage CMOS current mode reference circuit using self-regulator with adaptive biasing technique,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E103.A, no. 2, pp. 486–491, 2020, doi: https://doi.org/10.1587/transfun.2019EAP1061.

L. Wang, C. Zhan, “A 0.7-V 28-nW CMOS subthreshold voltage and current reference in one simple circuit,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 66, no. 9, pp. 3457–3466, 2019, doi: https://doi.org/10.1109/TCSI.2019.2927240.

L. Ding, Y. Wang, Z. Bao, H. Liao, X. Jin, “A nano-ampere current reference circuit in a 0.5 μm CDMOS technology,” Microelectron. J., vol. 90, pp. 336–341, 2019, doi: https://doi.org/10.1016/j.mejo.2019.02.003.

Y. Chen, X. Tan, B. Yu, C. Li, Y. Guo, “A new all-in-one bandgap reference and robust zero temperature coefficient (TC) point current reference circuit,” in 2017 IEEE 12th International Conference on ASIC (ASICON), 2017, pp. 541–544, doi: https://doi.org/10.1109/ASICON.2017.8252532.

Y. Siddiqi, N. Ahmed, M. A. Shahbaz, S. A. Jawed, “Process and temperature invariant on-chip current reference circuit,” in 2017 First International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT), 2017, pp. 1–5, doi: https://doi.org/10.1109/INTELLECT.2017.8277643.

K. Kondo, K. Tanno, H. Tamura, S. Nakatake, “Low voltage CMOS current mode reference circuit without operational amplifiers,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E101.A, no. 5, pp. 748–754, 2018, doi: https://doi.org/10.1587/transfun.E101.A.748.

Z. Huang, X. Zhu, Z. Li, “Design of a high precision current mode band gap reference circuit,” in 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), 2019, pp. 178–181, doi: https://doi.org/10.1109/EITCE47263.2019.9095076.

R. Torres, E. Roa, L. E. Rueda G., “On the design of a reliable current reference for systems-on-chip,” Int. J. Circuit Theory Appl., vol. 49, no. 7, pp. 2032–2046, 2021, doi: https://doi.org/10.1002/cta.2955.

J. Hu, C. Lu, H. Xu, J. Wang, K. Liang, G. Li, “A novel precision CMOS current reference for IoT systems,” AEU - Int. J. Electron. Commun., vol. 130, p. 153577, 2021, doi: https://doi.org/10.1016/j.aeue.2020.153577.

R. Torres, L. E. G. Rueda, N. Cuevas, E. Roa, “On the design of reliable and accurate current references,” in 2020 IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS), 2020, pp. 1–4, doi: https://doi.org/10.1109/LASCAS45839.2020.9069041.

S. V. Shinde, “Ultra-low power current reference based on flat band difference of MOSFETs,” J. Phys. Conf. Ser., vol. 1729, p. 012011, 2021, doi: https://doi.org/10.1088/1742-6596/1729/1/012011.

I. M. Vikulin, V. I. Stafeev, Physics of Semiconductor Devices, [in Russian]. Moscow: Radio i Svyaz’, 1990.

I. M. Vikulin, L. F. Vikulina, V. E. Gorbachev, N. S. Mikhailov, “Combined semiconductor injection magnetic field sensors for wireless information networks,” Radioelectron. Commun. Syst., vol. 63, no. 7, pp. 368–375, 2020, doi: https://doi.org/10.3103/S0735272720070043.

M. K. Amaljith, G. Hanumantha Rao, S. Rekha, “Low voltage current reference circuit with low temperature coefficient,” in 2018 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), 2018, pp. 60–63, doi: https://doi.org/10.1109/DISCOVER.2018.8674109.

V. H. Lytovchenko, M. V. Strikha, Solar Energy, [in Ukrainian]. Kyiv: K.І.S., 2015.

I. M. Vikulin, V. E. Gorbachev, S. D. Kurmashev, “Degradation of the parameters of transistor temperature sensors under the effect of ionizing radiation,” Semiconductors, vol. 51, no. 10, pp. 1354–1359, 2017, doi: https://doi.org/10.1134/S1063782617100190.

I. M. Vikulin, V. E. Gorbachev, A. A. Nazarenko, “Radiation sensitive detector based on field-effect transistors,” Radioelectron. Commun. Syst., vol. 60, no. 9, pp. 401–404, 2017, doi: https://doi.org/10.3103/S0735272717090035.

G. S. Ristić, M. Andjelković, A. B. Jakšić, “The behavior of fixed and switching oxide traps of RADFETs during irradiation up to high absorbed doses,” Appl. Radiat. Isot., vol. 102, pp. 29–34, 2015, doi: https://doi.org/10.1016/j.apradiso.2015.04.009.

Current reference based on JFET with p–n-junction and temperature dependence of its output current at different values of stabilizing resistor





Research Articles