Method for compensation of atmospheric nonstationarity in heterodyne interferometer measurements


  • G. B. Eshonqulov National University of Uzbekistan, Tashkent
  • R. R. Vildanov National University of Uzbekistan, Tashkent
  • F. Q. Turatov National University of Uzbekistan, Tashkent



heterodyne interferometer, optical phase, beat signal, seismic vibrations


A laser heterodyne system for recording of small shifts and vibrations of remote objects is presented. The use of additional compensation interferometer makes it possible to compensate the influence of environmental fluctuations on the measurement results. The registration results of seismic vibrations for various setup configuration are shown. The experiments indicate the reducing of perturbations of the air refractive index and laser frequency instability by implementing both hardware and software compensation of instabilities.


G. Berkovic, E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics, vol. 4, no. 4, p. 441, 2012, doi:

P. Chien, “Two‐frequency displacement measurement interferometer based on a double‐heterodyne technique,” Rev. Sci. Instruments, vol. 62, no. 1, pp. 254–255, 1991, doi:

S. Topcu, L. Chassagne, D. Haddad, Y. Alayli, P. Juncar, “Heterodyne interferometric technique for displacement control at the nanometric scale,” Rev. Sci. Instruments, vol. 74, no. 11, pp. 4876–4880, 2003, doi:

H. J. van Elburg, J. J. J. Dirckx, W. F. Decraemer, “Design and performance of a high-resolution dual-channel heterodyne laser velocimeter,” Optik, vol. 118, no. 7, pp. 345–349, 2007, doi:

H. Tabatabai, D. E. Oliver, J. W. Rohrbaugh, C. Papadopoulos, “Novel Applications of Laser Doppler Vibration Measurements to Medical Imaging,” Sens. Imaging An Int. J., vol. 14, no. 1–2, pp. 13–28, 2013, doi:

Y.-S. Jang, S.-W. Kim, “Compensation of the refractive index of air in laser interferometer for distance measurement: A review,” Int. J. Precis. Eng. Manuf., vol. 18, no. 12, pp. 1881–1890, 2017, doi:

K. D. Ridley, S. M. Watson, E. Jakeman, M. Harris, “Heterodyne measurements of laser light scattering by a turbulent phase screen,” Appl. Opt., vol. 41, no. 3, p. 532, 2002, doi:

H. Yan, H.-Z. Duan, L.-T. Li, Y.-R. Liang, J. Luo, H.-C. Yeh, “A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements,” Rev. Sci. Instruments, vol. 86, no. 12, p. 123102, 2015, doi:

V. Orlov, Y. Fomin, V. M. Semibalamut, D. Tereshkin, V. Zhmud, “Complex for measuring of hyper small tidal deformations of rocks on the base of He-Ne laser,” Autom. Softw. Enginery, vol. 3, no. 9, pp. 54–65, 2014, uri:АИПИ-3-2014-6_0.pdf.

C.-C. Hsu, C.-C. Wu, J.-Y. Lee, H.-Y. Chen, H.-F. Weng, “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Opt. Commun., vol. 281, no. 9, pp. 2582–2589, 2008, doi:

K. Meiners-Hagen, T. Meyer, G. Prellinger, W. Pöschel, D. Dontsov, F. Pollinger, “Overcoming the refractivity limit in manufacturing environment,” Opt. Express, vol. 24, no. 21, p. 24092, 2016, doi:

C. S. Chin, B. K. A. Ngoi, “Self-Compensated Heterodyne Laser Interferometer,” Int. J. Adv. Manuf. Technol., vol. 16, no. 3, pp. 217–219, 2000, doi:

H. J. Kang, B. J. Chun, Y.-S. Jang, Y.-J. Kim, S.-W. Kim, “Real-time compensation of the refractive index of air in distance measurement,” Opt. Express, vol. 23, no. 20, p. 26377, 2015, doi:

H. Wu, F. Zhang, T. Liu, J. Li, X. Qu, “Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry,” Opt. Express, vol. 24, no. 21, p. 24361, 2016, doi:

R. Vildanov, G. Eshonqulov, “Application of a heterodyne laser system to determine parameters of turbulent atmosphere,” Ukr. J. Phys., vol. 56, no. 1, pp. 18–20, 2011, uri:





Research Articles