DOI: https://doi.org/10.3103/S0735272720110047



Calculation method of electromagnetic waves scattering by dielectric toroid meteorological formations
Abstract
Keywords
References
N. L. Byzova, V. N. Ivanov, Е. K. Garger, Turbulence in Atmospheric Boundary Layer, [in Russian]. Leningrad: Hydrometeoizdat, 1989.
R. ITU, Handbook on Radiometeorology. ITU, 2014, uri: https://www.itu.int/dms_pub/itu-r/opb/hdb/R-HDB-26-2013-OAS-PDF-E.pdf.
А. А. Chernikov, Radar Reflections from Clear Sky, [in Russian]. Leningrad: Hydrometeoizdat, 1979.
W. J. Martin, A. Shapiro, “Discrimination of bird and insect radar echoes in clear air using high-resolution radars,” J. Atmos. Ocean. Technol., vol. 24, no. 7, pp. 1215–1230, 2007, doi: https://doi.org/10.1175/JTECH2038.1.
S. Fukao, K. Hamazu, Radar for Meteorological and Atmospheric Observations, vol. 9784431543. Tokyo: Springer, 2014, doi: https://doi.org/10.1007/978-4-431-54334-3.
J.-I. Yano, “Basic convective element: bubble or plume? A historical review,” Atmos. Chem. Phys., vol. 14, no. 13, pp. 7019–7030, 2014, doi: https://doi.org/10.5194/acp-14-7019-2014.
D. G. Akhmetov, Vortex Rings. Berlin: Springer-Verlag, 2009, doi: https://doi.org/10.1007/978-3-642-05016-9.
U. Yusupaliev, S. A. Shuteev, E. E. Vinke, P. U. Yusupaliev, “Vortex rings and plasma toroidal vortices in a homogeneous infinite medium. I. Maximum vortex path,” Bull. Lebedev Phys. Inst., vol. 37, no. 8, pp. 227–233, 2010, doi: https://doi.org/10.3103/S1068335610080014.
D. C. Tzarouchis, P. Ylä-Oijala, A. Sihvola, “Resonant scattering characteristics of homogeneous dielectric sphere,” IEEE Trans. Antennas Propag., vol. 65, no. 6, pp. 3184–3191, 2017, doi: https://doi.org/10.1109/TAP.2017.2690312.
D. Tzarouchis, A. Sihvola, “Light scattering by a dielectric sphere: Perspectives on the Mie resonances,” Appl. Sci., vol. 8, no. 2, 2018, doi: https://doi.org/10.3390/app8020184.
A. A. Kucharski, “The FIT-MoM hybrid method for analysis of electromagnetic scattering by dielectric bodies of revolution,” IEEE Trans. Antennas Propag., vol. 66, no. 3, pp. 1384–1391, 2018, doi: https://doi.org/10.1109/TAP.2018.2796721.
B.-B. Kong, X.-Q. Sheng, “A discontinuous Galerkin surface integral equation method for scattering from multiscale homogeneous objects,” IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 1937–1946, 2018, doi: https://doi.org/10.1109/TAP.2018.2803133.
L. Huang, Y.-B. Hou, H.-X. Zhang, L. Zhou, W.-Y. Yin, “Time-domain discontinuous Galerkin PMCHW integral equation method with MOD scheme for simulating electromagnetic pulse responses of arbitrarily shaped dielectric objects,” IEEE Trans. Electromagn. Compat., vol. 61, no. 4, pp. 1157–1166, 2019, doi: https://doi.org/10.1109/TEMC.2018.2853261.
X.-W. Huang, X.-Q. Sheng, “A discontinuous Galerkin self-dual integral equation method for scattering from IBC objects,” IEEE Trans. Antennas Propag., vol. 67, no. 7, pp. 4708–4717, 2019, doi: https://doi.org/10.1109/TAP.2019.2905670.
K. Shariff, A. Wray, “Analysis of the radar reflectivity of aircraft vortex wakes,” J. Fluid Mech., vol. 463, pp. 121–161, 2002, doi: https://doi.org/10.1017/S0022112002008674.
M. M. Bibby, C. M. Coldwell, A. F. Peterson, “A high order numerical investigation of electromagnetic scattering from a torus and a circular loop,” IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3656–3661, 2013, doi: https://doi.org/10.1109/TAP.2013.2258316.
L. A. Vainshtein, Electromagnetic Waves, [in Russian]. Moscow: Radio i Svyaz’, 1988.
М. V. Fedoryuk, Pass Method, [in Russian]. Moscow: Nauka, 1977.
I. S. Gradstein, I. М. Ryzhik, Tables of Integrals, Sums, Series and Products, [in Russian]. Moscow: State Publishing House Physics-Math. Literature, 1963.
A. N. Vulfson, O. O. Borodin, “The system of convective thermals as a generalized ensemble of Brownian particles,” Uspekhi Fiz. Nauk, vol. 186, no. 2, pp. 113–124, 2016, doi: https://doi.org/10.3367/UFNr.0186.201602a.0113.
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41