Antenna array calibration algorithm without access to channel signals

Authors

DOI:

https://doi.org/10.3103/S073527272001001X

Keywords:

array calibration, signal source tracking, phase perturbation, power measurements

Abstract

This paper describes the algorithm of antenna array (AA) calibration, which estimates and compensates phase lags, caused by non-identical electrical characteristics of array channels. The algorithm does not require the access to the channel signals or the channels disabling. It uses only the array output power measurements under the specific channel phase perturbations. The algorithm accuracy equals the phase shifter quantization step, i.e. it is twice less than phase shifter accuracy itself and does not depend on the number of array channels. The algorithm accuracy is compared with two similar calibration algorithms, known from publications. The compared algorithms accuracy depends on the number of array channels and is much less than the proposed algorithm. Thus, the new algorithm can be widely used for the efficient AA calibration, signal source angular position estimation and tracking by a calibrated or a non-calibrated AA with any aperture shape: linear, flat or conformal, with an arbitrary distance between neighbor AA elements and with an arbitrary antenna selected as a reference one.

References

R. J. Mailloux, Phased Array Antenna Handbook, 3rd ed. Artech House, Inc., 2017.

Q. Luo, S. S. Gao, W. Liu, C. Gu, Low-Cost Smart Antennas (Microwave and Wireless Technologies Series). Wiley, 2019.

L. S. Benenson, V. A. Zhuravlev, S. V. Popov, G. A. Postnov, Antenna Arrays [in Russian, ed. by L. S. Benenson]. Moscow: Sov. Radio, 1966.

S. Mohanty, C. Singh, V. Tiwari, “Estimation of rain attenuation losses in signal link for microwave frequencies using ITU-R model,” Proc. of IEEE Int. Geoscience and Remote Sensing Symp., 10-15 Jul. 2016, Beijing, China (IEEE, 2016), pp. 532–535. DOI: https://doi.org/10.1109/IGARSS.2016.7729132.

D. Liu, B. Gaucher, U. Pfeiffer, J. Grzyb, Advanced Millimeter-Wave Technologies: Antennas, Packaging and Circuits. Wiley, 2009. DOI: https://doi.org/10.1002/9780470742969.

Y. P. Zhang, D. Liu, “Antenna-on-chip and antenna-in-package solutions to highly integrated millimeter-wave devices for wireless communications,” IEEE Trans. Antennas Propag., v.57, n.10, p.2830, 2009. DOI: https://doi.org/10.1109/TAP.2009.2029295.

D. Liu, Y. P. Zhang, “Integration of array antennas in chip package for 60-GHz radios,” Proc. IEEE, v.100, n.7, p.2364, 2012. DOI: https://doi.org/10.1109/JPROC.2012.2186101.

W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results,” IEEE Commun. Mag., v.52, n.2, p.106, 2014. DOI: https://doi.org/10.1109/MCOM.2014.6736750.

B. Sadhu, Y. Tousi, J. Hallin, S. Sahl, S. K. Reynolds, Ö. Renström, K. Sjögren, O. Haapalahti, N. Mazor, B. Bokinge, G. Weibull, H. Bengtsson, A. Carlinger, E. Westesson, J.-E. Thillberg, L. Rexberg, M. Yeck, Xiaoxiong Gu, M. Ferriss, Duixian Liu, D. Friedman, A. Valdes-Garcia, “A 28-GHz 32-element TRX phased-array IC with concurrent dual-polarized operation and orthogonal phase and gain control for 5G communications,” IEEE J. Solid-State Circuits, v.52, n.12, p.3373, 2017. DOI: https://doi.org/10.1109/JSSC.2017.2766211.

A. Valdes-Garcia, B. Sadhu, X. Gu, Y. Tousi, D. Liu, S. K. Reynolds, J. Haillin, S. Sahl, L. Rexberg, “Circuit and antenna-in-package innovations for scaled mmWave 5G phased array modules,” Proc. of IEEE Custom Integrated Circuits Conf., 8-11 Apr. 2018, San Diego, USA. IEEE, 2018, p.1-8, 2018. DOI: https://doi.org/10.1109/CICC.2018.8357050.

N. S. Jeong, Y.-C. Ou, A. Tassoudji, J. Dunworth, O. Koymen, V. Raghavan, “A recent development of antenna-in-package for 5G millimeter-wave applications,” Proc. of 19th IEEE Wireless and Microwave Technology Conf., 9-10 Apr. 2018, Sand Key, USA. IEEE, 2018, p.1-3. DOI: https://doi.org/10.1109/WAMICON.2018.8363905.

A. Lohou, D. Chaimbault, B. Lesur, A. Karas, J. Lintignat, B. Jarry, “Ka-band MMIC variable gain low noise amplifier for electronic scanning antenna,” Proc. of 25th IEEE Int. Conf. on Electronics, Circuits and Systems, 9-12 Dec. 2018, Bordeaux, France. IEEE, 2018, p.337-340. DOI: https://doi.org/10.1109/ICECS.2018.8617968.

A. Sebak, L. Shafai, H. Moheb, A. Ittipiboon, “The effect of random amplitude and phase errors on phased arrays performance,” Proc. of Symp. on Antenna Technology and Applied Electromagnetics, 15-17 Aug. 1990, Winnipeg, Canada. IEEE, 1990, p.391-396. URI: https://ieeexplore.ieee.org/document/7863851.

A. Grebennikov, N. Kumar, B. S. Yarman, Broadband RF and Microwave Amplifiers. CRC Press, 2017. DOI: https://doi.org/10.1201/b19053.

Y. S. Shifrin, Statistical Antenna Theory. Golem Press, 1971.

W. Q. Malik, C. J. Stevens, D. J. Edwards, “Ultrawideband antenna distortion compensation,” IEEE Trans. Antennas Propag., v.56, n.7, p.1900, 2008. DOI: https://doi.org/10.1109/TAP.2008.924690.

D. V. Nezlin and V. I. Djigan, “Fast signal search algorithm for adaptive antenna array,” Abstracts of All-Union Conf. on Microprocessors-85, 1985, Moscow, Russia. Moscow: MIET, 1985, v.1, p.162.

H. Steyskal, R. A. Shore, R. L. Haupt, “Methods for null control and their effects on the radiation pattern,” IEEE Trans. Antennas Propag., v.34, n.3, p.404, 1986. DOI: https://doi.org/10.1109/TAP.1986.1143816.

D. V. Nezlin and V. I. Djigan, “Functional structure analysis in antenna arrays discrete phase adaptation applications,” Electronic Equipment. Series 10: Microelectronic Devices, v.75, n.3, p.3, 1989.

V. I. Djigan and D. V. Nezlin, “Gradient algorithms in problems of discrete phase adaptation of antenna arrays,” Radiotekhnika, n.5, p.84, 1991.

C. Tengbo, Z. Lu, D. Hailong, “An amplitude-phase measurement method of phased array antenna based on self-calibration RF channel,” Proc. of 10th Int. Conf. on Communication Software and Networks, 6-9 Jul. 2018, Chengdu, China. IEEE, 2018, p.460-464. DOI: https://doi.org/10.1109/ICCSN.2018.8488296.

Ye. V. Koroteckiy, A. M. Shitikov, V. V. Denisenko, “Influence of calibration probe positioning error on the aperture phase error when calibration and beam forming in near-field region,” Radiotekhnika, n.5, p.89, 2013. URI: https://elibrary.ru/item.asp?id=19062134.

G. G. Bubnov, S. M. Nikulin, Yu. N. Seriakov, S. A. Fursov, Switching Method for Phased Antenna Array Parameters Measurements [in Russian]. Moscow: Radio i Svyaz’, 1988.

A. O. Fadamiro, O. J. Famoriji, R. Kashif, M. S. Ali, F. Lin, “An improved calibration algorithm for active phased array antenna,” Proc. of IEEE Int. Conf. on Computational Electromagnetics, 26-28 Mar. 2018, Chengdu, China. IEEE, 2018, p.1-3, 2018. DOI: https://doi.org/10.1109/COMPEM.2018.8496702.

A. O. Fadamiro, A. A.-H. Samomhe, O. J. Famoriji, F. Lin, “A multiple element calibration algorithm for active phased array antenna,” IEEE J. Multiscale Multiphysics Computational Techniques, v.4, p.163, 2019. DOI: https://doi.org/10.1109/JMMCT.2019.2923113.

M. K. Leavitt, “A phase adaptation algorithm,” IEEE Trans. Antennas Propag., v.24, n.5, p.754, 1976. DOI: https://doi.org/10.1109/TAP.1976.1141404.

R. Sorace, “Phased array calibration,” IEEE Trans. Antennas Propag., v.49, n.4, p.517, 2001. DOI: https://doi.org/10.1109/8.923310.

V. I. Djigan, V. V. Kurganov, “Antenna array calibration algorithm based on phase perturbation,” Proc. of 17th IEEE East-West Design & Test Symp., 13-16 Sept. 2019, Batumi, Georgia. IEEE, 2019. DOI: https://doi.org/10.1109/EWDTS.2019.8884394.

L. C. Godara, “The effect of phase-shifter errors on the performance of an antenna-array beamformer,” IEEE J. Oceanic Engineering, v.10, n.3, p.278, 1985. DOI: https://doi.org/10.1109/JOE.1985.1145105.

A. D. Brown, D. Boehringer, T. Cooke, Electronically Scanned Arrays MATLAB® Modelling and Simulation. CRC Press, 2012. URI: https://www.crcpress.com/Electronically-Scanned-Arrays-MATLAB-Modeling-and-Simulation/Brown/p/book/9781138074033.

Published

2020-01-21

Issue

Section

Research Articles