DOI: https://doi.org/10.3103/S0735272719120021
Open Access  Subscription Access

### Method for analysis of periodic stationary states of non-linear electric circuits on basis of Kotelnikov-Shannon series

A. O. Moskovko, O. A. Vityaz, Guy A. E. Vandenbosch

#### Abstract

In this paper it is represented an efficient method for calculation of periodic stationery states of non-linear electronic circuits at time domain. The method is based on application of Kotelnikov–Shannon series for approximation of derivatives of mathematic models of the circuit. Cyclic approximation form with application of Shannon kernel allows to obtain simple matrix relation for the derivatives. The coefficients matrix in obtained expressions does not depend on amount of unknown signals in the circuit and it depends on selected amount of time samples. Amount of time samples is selected considering necessary accuracy of the result and non-linearity degree of the circuit. This method allows to convert the system of differential algebraic equations into a system of non-linear algebraic equations which can be solved by means of Newton–Raphson method, for example. In this paper there are represented several examples of calculation of stationery states of non-linear electronic circuits demonstrating the method efficiency. There are also represented the experimental results of voltage rectifier proving the represented method accuracy.

#### Keywords

periodic steady-state; Shannon series; rectifier; oscillator

PDF

#### References

Aprille, T.J.; Trick, T.N. “A computer algorithm to determine the steady-state response of nonlinear oscillators,” IEEE Trans. Circuit Theory, v.19, n.4, p.354, 1972. DOI: https://doi.org/10.1109/TCT.1972.1083500.

Vytyaz, I.; Lee, D.C.; Lu, S.; Mehrotra, A.; Moon, U.-K.; Mayaram, K. “Periodic steady-state analysis of oscillators with a specified oscillation frequency,” Proc. of IEEE Int. Symp. on Circuits and Systems, 27-30 May 2007, New Orleans, USA. IEEE, 2007, p.1073-1076. DOI: https://doi.org/10.1109/ISCAS.2007.378195.

Aprille, T.J.; Trick, T.N. “Steady-state analysis of nonlinear circuits with periodic inputs,” Proc. IEEE, v.60, n.1, p.108, 1972. DOI: https://doi.org/10.1109/PROC.1972.8563.

Parkhurst, J.R.; Ogborn, L.L. “Determining the steady-state output of nonlinear oscillatory circuits using multiple shooting,” IEEE Trans. Computer-Aided Design Integrated Circuits Syst., v.14, n.7, p.882, 1995. DOI: https://doi.org/10.1109/43.391735.

Brambilla, A.; Gruosso, G.; Gajani, G.S. “FSSA: Fast Steady-State Algorithm for the analysis of mixed analog/digital circuits,” IEEE Trans. Computer-Aided Design Integrated Circuits Syst., v.29, n.4, p.528, 2010. DOI: https://doi.org/10.1109/TCAD.2010.2042886.

Li, Xin; Hu, Bo; Ling, Xieting; Zeng, Xuan. “A wavelet-balance approach for steady-state analysis of nonlinear circuits,” IEEE Trans. Circuits Systems I: Fundamental Theory Appl., v.49, n.5, p.689, 2001. DOI: https://doi.org/10.1109/TCSI.2002.1001960.

Nakabayashi, T.; Mochizuki, M.; Moro, S. “Analysis method of periodic solution using Haar wavelet transform for autonomous nonlinear circuits,” Proc. of Int. Symp. on Intelligent Signal Processing and Communication Systems, ISPACS, 9-12 Nov. 2015, Nusa Dua, Indonesia. IEEE, 2015, p.252-256. DOI: https://doi.org/10.1109/ISPACS.2015.7432775.

Zhou, Xin; Zhou, Dian; Liu, Jin; Li, Ruiming; Zeng, Xuan; Chiang, Charles. “Steady-state analysis of nonlinear circuits using discrete singular convolution method,” Proc. of Int. Conf. on Design, Automation and Test in Europe Conference and Exhibition, 16-20 Feb. 2004, Paris, France. IEEE, 2004, v.2, p.1322-1326. DOI: https://doi.org/10.1109/DATE.2004.1269078.

Moskovko, A.; Vityaz, O. “Periodic steady-state analysis of relaxation oscillators using discrete singular convolution method,” Proc. of 37th Int. Conf. on Electronics and Nanotechnology, ELNANO, 18-20 Apr. 2017, Kyiv, Ukraine. IEEE, 2017, p.506-510. DOI: https://doi.org/10.1109/ELNANO.2017.7939803.

Kundert, K.S.; Sangiovanni-Vincentelli, A. “Simulation of nonlinear circuits in the frequency domain,” IEEE Trans. Computer-Aided Design Integrated Circuits Syst., v.5, n.4, p.521, 1986. DOI: https://doi.org/10.1109/TCAD.1986.1270223.

Ushida, A.; Chua, L. “Frequency-domain analysis of nonlinear circuits driven by multi-tone signals,” IEEE Trans. Circuits Syst., v.31, n.9, p.766, 1984. DOI: https://doi.org/10.1109/TCS.1984.1085584.

Liu, H.; Batselier, K.; Wong, N. “A novel linear algebra method for the determination of periodic steady states of nonlinear oscillators,” Proc. of 2014 IEEE/ACM Int. Conf. on Computer-Aided Design, ICCAD, 2-6 Nov. 2014, San Jose, USA. IEEE, 2014, p.611-617. DOI: https://doi.org/10.1109/ICCAD.2014.7001416.

Cheng, X.; Chen, Y.; Chen, X.; Zhang, B.; Qiu, D. “An extended analytical approach for obtaining the steady-state periodic solutions of SPWM single-phase inverters,” Proc. of 2017 IEEE Energy Conversion Congress and Exposition, ECCE, 1-5 Oct. 2017, Cincinnati, USA. IEEE, 2017, p.1311-1316. DOI: https://doi.org/10.1109/ECCE.2017.8095941.

Chen, Y.; Chen, X.; Zhang, B.; Qiu, D. “A new analyzing scheme for non-integer order DC/DC converters,” Proc. of IECON 2015 - 41st Annual Conf. of the IEEE Industrial Electronics Society, 9-12 Nov. 2015, Yokohama, Japan. IEEE, 2015, p.1633-1638. DOI: https://doi.org/10.1109/IECON.2015.7392335.

Brachtendorf, H.G.; Melville, R.; Feldmann, P.; Lampe, S.; Laur, R. “Homotopy method for finding the steady states of oscillators,” IEEE Trans. Computer-Aided Design Integrated Circuits Syst., v.33, n.6, p.867, 2014. DOI: https://doi.org/10.1109/TCAD.2014.2302637.

Chen, Z.; Batselier, K.; Liu, H.; Wong, N. “An efficient homotopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators,” Proc. of 2017 22nd Asia and South Pacific Design Automation Conf., ASP-DAC, 16-19 Jan. 2017, Chiba, Japan. IEEE, 2017, p.283-288. DOI: https://doi.org/10.1109/ASPDAC.2017.7858333.

Moskovko, A.; Vityaz, O. “Transient analysis of electronic circuits using periodic steady-state analysis technique,” Proc. of 38th Int. Conf. on Electronics and Nanotechnology, ELNANO, 24-26 Apr. 2018, Kyiv, Ukraine. IEEE, 2018, p.499-503. DOI: https://doi.org/10.1109/ELNANO.2018.8477503.