Open Access Open Access  Restricted Access Subscription Access
Top view of fabricated S-shaped RMSA

Performance investigations of S-shaped RMSA using multilayer perceptron neural network for S-band applications

Mohammad Aneesh, Ashish Singh, Kumari Kamakshi, Jamshed Aslam Ansari


In this article an S-shaped rectangular microstrip patch antenna (RMSA) is investigated for S-band applications using artificial neural network (ANN). The authors have done the parametric study of different radiating structures to obtain S-shaped RMSA. The size of inserted notches on the radiating patch for achieving wideband operation is computed through multilayer perceptron artificial neural network (MLP-ANN) over a desired range of its performance effecting parameters such as frequency, gain, directivity, antenna efficiency, and radiation efficiency. MLP-ANN model is trained and tested with seven different algorithms. The research found that Levenberg-Marquardt (LM) training algorithm takes less computational time with better accuracy for computation of notches size on radiating patch over a priory defined performance parameters. To verify the work, a prototype of S-shaped RMSA is physically fabricated on foam substrate and tested experimentally. The experimental results are in good agreement with the simulated results that are produced with ANN.


artificial neural network; Levenberg-Marquardt; rectangular microstrip patch antenna; wideband operation

Full Text:



BAHL, I.J.; BHARTIA, P. Microstrip Antennas. Dedham, Mass: Artech House, 1980.

HUYNH, T.U.; LEE, K.-F. “Single-layer single-patch wideband microstrip antenna,” Electron. Lett., v.31, n.16, p.1310, June 1995. DOI:

RAFI, G.; SHAFAI, L. “Broadband microstrip patch antenna with V-slot,” IEE Proc. Microwave Antenna Propag., v.151, n.5, p.435, Nov. 2004. DOI:

NEYESTANAK, A.A.L.; KASHANI, F.H.; BARKESHLI, K. “W-shaped enhanced-bandwidth patch antenna for wireless communication,” Wireless Pers. Commun., v.43, n.4, p.1257, Dec. 2007. DOI:

PANDEY, V.K.; VISHWAKARMA, B.R. “Analysis of an E-shaped patch antenna,” Microwave Opt. Technol. Lett., v.49, n.1, p.4, Jan. 2007. DOI:

ANSARI, J.A.; DUBEY, S.K.; MISHRA, A. “Analysis of half E-shaped patch for wideband application,” Microwave Opt. Technol. Lett., v.51, n.6, p.1576, June 2009. DOI:

SINGH, A.; ANEESH, M.; KAMAKSHI, K.; ANSARI, J.A. “Circuit theory analysis of aperture coupled patch antenna for wireless communication,” Radioelectron. Commun. Syst., v.61, n.4, p.168, 2018. DOI:

KAUR, P.; AGGARWAL, S.K.; DE, A. “Performance enhancement of rectangular microstrip patch antenna using double H shaped metamaterial,” Radioelectron. Commun. Syst., v.59, n.11, p.496, 2016. DOI:

DESHMUKH, A.A.; KUMAR, G. “Compact broadband S-shaped microstrip antennas,” Electron. Lett., v.42, n.5, p.260, Mar. 2006. DOI:

MISHRA, R.K.; PATNAIK, A. “Neural network-based CAD model for the design of square-patch antennas,” IEEE Trans. Antennas Propag., v.46, n.12, p.1890, Dec. 1998. DOI:

GUNEY, K.; SAGIROGLU, S.; ERLER, M. “Generalized neural method to determine resonant frequencies of various microstrip antennas,” Int. J. RF Microwave Computer-Aided Engineering, v.12, n.1, p.131, 2002. DOI:

PATTNAIK, S.S.; PANDA, D.C.; DEVI, S. “Radiation resistance of coax-feed rectangular microstrip patch antenna with the use of artificial neural networks,” Microwave Opt. Technol. Lett., v.34, n.1, p.51, July 2002. DOI:

PATTNAIK, S.S.; PANDA, D.C.; DEVI, S. “Input impedance of rectangular microstrip patch antenna using artificial neural networks,” Microwave Opt. Technol. Lett., v.32, n.5, p.381, Mar. 2002. DOI:

NEOG, D.K.; PATTNAIK, S.S.; PANDA, D.C.; DEVI, S.; KHUNTIA, B.; DUTTA, M. “Design of a wideband microstrip antenna and the use of artificial neural networks in parameter calculation,” IEEE Antennas Propag. Mag., v.47, n.3, p.60, 2005. DOI:

SAIKAVARA, K. “Artificial neural network based design of a three-layered microstrip circular ring antenna with specified multi-frequency operation,” Neural Comput. Appl., v.18, n.1, p.57, Jan. 2009. DOI:

WASHINGTON, G. “Aperture antenna shape prediction by feedforward neural networks,” IEEE Trans. Antennas Propag., v.45, n.4, p.683, Apr. 1997. DOI:

AKDAGLI, A.; TOKTAS, A.; KAYABASI, A.; DEVELI, I. “An application of artificial neural network to compute the resonant frequency of E-shaped compact microstrip antennas,” J. Electrical Engineering, v.64, n.5, p.317, 2013. DOI:

AKDAGLI, Ali; BIÇER, Mustafa Berkan; ERMIŞ, Seda. “A novel expression for resonant length obtained by using artificial bee colony algorithm in calculating resonant frequency of C-shaped compact microstrip antennas,” Turk. J. Elec. Eng. & Comp. Sci., v.19, n.4, p.597, 2011. DOI:

ANEESH, M.; ANSARI, J.A.; SINGH, A.; KAMAKSHI; SAYEED, S.S. “Analysis of microstrip line feed slot loaded patch antenna using artificial neural network,” PIER B, v.58, p.35, 2014. DOI:

TÜRKER, Nurhan; GÜNEŞ, Filiz; YILDIRIM, Tülay. “Artificial neural design of microstrip antennas,” Turk. J. Elec. Eng. & Comp. Sci., v.14, n.3, p.445, 2006.

ZHANG, Q.-J.; GUPTA, K.C.; DEVABHAKTUNI, V.K. “Artificial neural networks for RF and microwave design -from theory to practice,” IEEE Trans. Microwave Theory Tech., v.51, n.4, p.1339, Apr. 2003. DOI:

MISHRA, R.K.; PATNAIK, A. “Designing rectangular patch antenna using the neurospectral method,” IEEE Trans. Antennas Propag., v.51, n.8, p.1914, Aug. 2003. DOI:

WATSON, P.M.; GUPTA, K.C.; MAHAJAN, R.L. “Development of knowledge based artificial neural network models for microwave components,” IEEE MTT-S Int. Microwave Symp. Dig., v.1, p.9, 1998. DOI:

GUNEY, K.; SARIKAYA, N. “A hybrid method based on combining artificial neural network and fuzzy inference system for simultaneous computation of resonant frequencies of rectangular, circular, and triangular microstrip antennas,” IEEE Trans. Antennas Propag., v.55, n.3, p.659, Mar. 2007. DOI:

WANG, Z.; FANG, S.; WANG, Q.; LIU, H. “An ANN-based synthesis model for the single-feed circularly-polarized square microstrip antenna with truncated corners,” IEEE Trans. Antennas Propag., v.60, n.12, p.5989, Dec. 2012. DOI:

KHAN, T.; DE, A.; UDDIN, M. “Prediction of slot-size and inserted air-gap for improving the performance of rectangular microstrip antennas using artificial neural networks,” IEEE Antennas Wireless Propag. Lett., v.12, p.1367, Oct. 2013. DOI:

Zeland software, Inc. IE3D simulation software, version 14.05 Zeland software, CA, 2008.

HAYKIN, S. Neural Networks: A Comprehensive Foundation, 3rd ed. Prentice-Hall, 2007.

HIGHAM, D.J.; HIGHAM, N.J. Matlab ANN toolbox MATLAB Guide. Philadelphia: SIAM, 2005.

SIVIA, J.S.; PHARWAHA, A.P.S.; KAMAL, T.S. “Analysis and design of circular fractal antenna using artificial neural networks,” PIER B, v.56, p.251, 2013. DOI:

KARABOGA, D.; GUNEY, K.; SAGIROGLU, S.; ERLER, M. “Neural computation of resonance frequency of electrically thin and thick rectangular microstrip antennas,” IEE Proc. Microwaves Antennas Propag., v.146, n.2, p.155, Apr. 1999. DOI:

HAGAN, M.T.; MENHAJ, M.B. “Training feedforward networks with the Marquardt algorithm,” IEEE Trans. Neural Netw., v.5, n.6, p.989, Nov. 1994. DOI:

© Radioelectronics and Communications Systems, 2004–2019
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41