DOI: https://doi.org/10.3103/S0735272719040022
Open Access Open Access  Restricted Access Subscription Access
Photo of a third-order microstrip BPF prototype

Using coupling matrix in band-pass filters design

Alexander V. Zakharov, Sergii N. Litvintsev, Ludmila S. Pinchuk

Abstract


This article shows that the capabilities of the coupling matrix [m] for describing microwave band-pass filters (BPF) are limited. The existing procedure for calculating frequency characteristics, based on the coupling matrix, inaccurately describes the physical processes in real BPF with one or several transmission-type resonators. Moreover, these filters can have both simple (magnetic and electrical) and mixed coupling coefficients between the resonators. This fact is confirmed on four experimental microstrip BPF samples. A third-order filter with two direct and one magnetic cross-coupling has a left-hand transmission zero, while the matrix [m] predicts a right-hand transmission zero. A fourth-order filter with three direct and three magnetic cross-couplings has two different transmission zeros, while the matrix [m] predicts one right-hand transmission zero. A fifth-order filter with four direct and six magnetic cross-couplings has a frequency response close to symmetric, if an attenuation level is limited to 40 dB. At the same time, the matrix [m] leads to an asymmetric frequency response of this filter with a right-hand transmission zero. The experimental microstrip three-resonator BPF with mixed cross-coupling has a symmetrical frequency response with two transmission zeros, which are equidistant from the center band-pass frequency. Using coupling matrix leads to a symmetric frequency response with low selectivity, which has no transmission zeros. An explanation of the discrepancies between the measured characteristics of real filters and calculated with the coupling matrix filters is provided in this study.

Keywords


band-pass filter; coupling matrix; cross coupling; mixed coupling; transmission zero; frequency response

Full Text:

PDF

References


ATIA, A.E.; WILLIAMS, A.E. “Narrow-bandpass waveguide filters,” IEEE Trans. Microw. Theory Tech., v.20, n.4, p.258, Apr. 1972. DOI: https://doi.org/10.1109/TMTT.1972.1127732.

ATIA, A.; WILLIAMS, A.; NEWCOMB, R. “Narrow-band multiple-coupled cavity synthesis,” IEEE Trans. Circuits Syst., v.21, n.5, p.649, Sep. 1974. DOI: https://doi.org/10.1109/TCS.1974.1083913.

ATIA, W.A.; ZAKI, K.A.; ATIA, A.E. “Synthesis of general topology multiple coupled resonator filters by optimization,” IEEE MTT-S Int. Microw. Symp. Dig., 7-12 Jun. 1998, Baltimore, USA. IEEE, 1998, v.2, p.821-824. DOI: https://doi.org/10.1109/MWSYM.1998.705116.

AMARI, S. “Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique,” IEEE Trans. Microw. Theory Tech., v.48, n.9, p.1559, Sep. 2000. DOI: https://doi.org/10.1109/22.869008.

LANNE, A.A. Optimal Synthesis of Linear Electronic Circuits. Moscow: Svyaz’, 1978.

LEVY, R. “Synthesis of general asymmetric singly- and doubly-terminated cross-coupled filters,” IEEE Trans. Microw. Theory Tech., v.42, n.12, p.2468, Dec. 1994. DOI: https://doi.org/10.1109/22.339783.

LEVY, R. “Direct synthesis of cascaded quadruplet (CQ) filters,” IEEE Trans. Microw. Theory Tech., v.43, n.12, p.2940, Dec. 1995. DOI: https://doi.org/10.1109/22.476634.

AMARI, S. “On the maximum number of finite transmission zeros of coupled resonator filters with a given topology,” IEEE Microw. Guided Wave Lett., v.9, n.9, p.354, Sep. 1999. DOI: https://doi.org/10.1109/75.790472.

CAMERON, R.J. “General coupling matrix synthesis methods for Chebyshev filtering functions,” IEEE Trans. Microw. Theory Tech., v.47, n.4, p.433, Apr. 1999. DOI: https://doi.org/10.1109/22.754877.

CAMERON, R.J. “Advanced coupling matrix synthesis techniques for microwave filters,” IEEE Trans. Microw. Theory Tech., v.51, n.1, p.1, Jan. 2003. DOI: https://doi.org/10.1109/TMTT.2002.806937.

HONG, J.-S. Microstrip Filters for RF/Microwave Applications, 2nd ed. New York: Wiley, 2011. DOI: http://doi.org/10.1002/9780470937297.

LEVY, R.; PETRE, P. “Design of CT and CQ filters using approximation and optimization,” IEEE Trans. Microw. Theory Tech., v.49, n.12, p.2350, Dec. 2001. DOI: https://doi.org/10.1109/22.971620.

MA, K.; MA, J.-G.; YEO, K.S.; DO, M.A. “A compact size coupling controllable filter with separate electric and magnetic coupling paths,” IEEE Trans. Microw. Theory Tech., v.54, n.3, p.1113, 2006. DOI: https://doi.org/10.1109/TMTT.2005.864118.

HOFT, M.; SHIMAMURA, T. “Design of symmetric trisection filters for compact low-temperature co-fired ceramic realization,” IEEE Trans. Microw. Theory Tech., v.58, n.1, p.165, Jan. 2010. DOI: https://doi.org/10.1109/TMTT.2009.2035870.

ZAKHAROV, A.; ROZENKO, S.; ILCHENKO, M. “Two types of trisection bandpass filters with mixed cross-coupling,” IEEE Microw. Wirel. Compon. Lett., v.28, n.7, p.585, Jul. 2018. DOI: https://doi.org/10.1109/LMWC.2018.2837905.

ZAKHAROV, A.; ILCHENKO, M. “Trisection microstrip delay line filter with mixed cross-coupling,” IEEE Microw. Wirel. Compon. Lett., v.27, n.12, p.1083, Dec. 2017. DOI: https://doi.org/10.1109/LMWC.2017.2759724.

SZYDLOWSKI, L.; LAMECKI, A.; MROZOWSKI, M. “Coupled-resonator filters with frequency-dependent couplings: Coupling matrix synthesis,” IEEE Microw. Wireless Compon. Lett., v.22, n.6, p.312, Jun. 2012. DOI: https://doi.org/10.1109/LMWC.2012.2197386.

SZYDLOWSKI, L.; LESZCZYNSKA, N.; LAMECKI, A.; MROZOWSKI, M. “A substrate integrated waveguide (SIW) bandpass filter in a box configuration with frequency-dependent coupling,” IEEE Microw. Wireless Compon. Lett., v.22, n.11, p.556, Nov. 2012. DOI: https://doi.org/10.1109/LMWC.2012.2221690.

SZYDLOWSKI, L.; LAMECKI, A.; MROZOWSKI, M. “Coupled-resonator waveguide filter in quadruplet topology with frequency-dependent coupling — A design based on coupling matrix,” IEEE Microw. Wireless Compon. Lett., v.22, n.11, p.553, Nov. 2012. DOI: https://doi.org/10.1109/LMWC.2012.2225604.

SZYDLOWSKI, L.; LESZCZYNSKA, N.; MROZOWSKI, M. “Generalized Chebyshev bandpass filters with frequency-dependent couplings based on stubs,” IEEE Trans. Microw. Theory Tech., v.61, n.10, p.3601, Oct. 2013. DOI: https://doi.org/10.1109/TMTT.2013.2279777.

SZYDLOWSKI, L.; JEDRZEJEWSKI, A.; MROZOWSKI, M. “A trisection filter design with negative slope of frequency- dependent crosscoupling implemented in substrate integrated waveguide (SIW),” IEEE Microw. Wireless Compon. Lett., v.23, n.9, p.456, Sep. 2013. DOI: https://doi.org/10.1109/LMWC.2013.2272611.

SZYDLOWSKI, L.; MROZOWSKI, M. “A self-equalized waveguide filter with frequency-dependent (resonant) couplings,” IEEE Microw. Wireless Compon. Lett., v.24, n.11, p.769, Nov. 2014. DOI: https://doi.org/10.1109/LMWC.2014.2303171.

MATTHAEI, G.L.; JONES, E.M.T.; YOUNG, L. Microwave Filters, Impedance-Matching Network, and Coupling Structures. Norwood: Artech House, 1980.

KURZROK, R.M. “General three-resonator filters in waveguide,” IEEE Trans. Microw. Theory Tech., v.14, n.1, p.46, Jan. 1966. DOI: https://doi.org/10.1109/TMTT.1966.1126154.

ZAKHAROV, A.V.; ROZENKO, S.A. “Duplexer designed on the basis of microstrip filters using high dielectric constant substrates,” J. Commun. Technol. Electron., v.57, n.6, p.649, 2012. DOI: https://doi.org/10.1134/S1064226912030187.

KURZROK, R.M. “General four-resonator filters at microwave frequencies,” IEEE Trans. Microw. Theory Tech., v.14, n.6, p.295, 1966. DOI: https://doi.org/10.1109/TMTT.1966.1126254.

ZAKHAROV, A.V.; IL’CHENKO, M.E. “Pseudocombline bandpass filters based on half-wave resonators manufactured from sections of balanced striplines,” J. Commun. Technol. Electron., v.60, n.7, p.801, 2015. DOI: https://doi.org/10.1134/S1064226915060182.

ZAKHAROV, A.V.; IL’CHENKO, M.Ye.; PINCHUK, L.S. “Coupling coefficients of step-impedance resonators in stripeline band-pass filters of array type,” Radioelectron. Commun. Syst., v.57, n.5, p.217, 2014. DOI: https://doi.org/10.3103/S0735272714050045.

ZAKHAROV, A.V.; IL’CHENKO, M.Ye.; PINCHUK, L.S. “Coupling coefficient of quarter-wave resonators as a function of parameters of comb stripline filters,” Radioelectron. Commun. Syst., v.58, n.6, p.284, 2015. DOI: https://doi.org/10.3103/S0735272715060060.

RICHARDS, P.I. “Resistor-transmission-line circuits,” Proc. IRE, v.36, n.2, p.217, Feb. 1948. DOI: https://doi.org/10.1109/JRPROC.1948.233274.

RIBLET, H.J. “General synthesis of quarter-wave impedance transformers,” IRE Trans. Microwave Theory Tech., v.5, n.1, p.36, Jan. 1957. DOI: https://doi.org/10.1109/TMTT.1957.1125088.

MATSUMOTO, A. Microwave Filters and Circuits. Academic Press, 1970. URI: https://www.elsevier.com/books/microwave-filters-and-circuits/matsumoto/978-0-12-027961-6.







© Radioelectronics and Communications Systems, 2004–2019
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41