Fingers movements control system based on artificial neural network model
DOI:
https://doi.org/10.3103/S0735272719010047Keywords:
hand, finger movements, electromyography, pattern recognition, artificial neural networkAbstract
Surface electromyographic (sEMG) signal is used in the various fields of applications where the need exists to measure the activity of body muscles, such as brain-computer interfaces, game industry, medical engineering, and other practical spheres. Even more, the use of sEMG signal in the field of active prosthesis industry has become traditional for many years. However, despite the fact that the question of using it in the field of fingers prostheses is still open, in general, the sEMG signal required multichannel measuring devices or massive, voluminous equipment for precise recognition of hands or fingers movement. That is decreasing the possible portability and convenience of prostheses and as a consequence is increasing their final price. In this paper we propose a method of organizing the controlling and measuring unit of the prosthetic device based on artificial neural network (ANN) model and one-channel microcontroller based sEMG measuring system. The proposed ANN model works with only 4 input time-domain features of sEMG signal and provides an accuracy of 95.52% for classification of 6 different types of finger movements that makes it a good solution for next implementation in the system of prosthetic fingers or wrist devices.References
CHIEN, T.-W.; LIN, W.-S. “Simulation study of activities of daily living functions using online computerized adaptive testing,” BMC Med. Inform. Decis. Mak., v.16, p.130, 2016. DOI: https://doi.org/10.1186/s12911-016-0370-8.
GULDE, P.; HERMSDÖRFER, J. “Both hands at work: the effect of aging on upper-limb kinematics in a multi-step activity of daily living,” Exp. Brain Res., v.235, n.5, p.1337, 2017. DOI: https://doi.org/10.1007/s00221-017-4897-4.
RESNIK, L.; BORGIA, M.; ACLUCHE, F. “Timed activity performance in persons with upper limb amputation: A preliminary study,” J. Hand Ther., v.30, n.4, p.468, 2017. DOI: https://doi.org/10.1016/j.jht.2017.03.008.
ZUNIGA, J.M.; CARSON, A.M.; PECK, J.M.; KALINA, T.; SRIVASTAVA, R.M.; PECK, K. “The development of a low-cost three-dimensional printed shoulder, arm, and hand prostheses for children,” Prosthet. Orthot. Int., v.41, n.2, p.205, 2017. DOI: https://doi.org/10.1177/0309364616640947.
CORDELLA, F.; CIANCIO, A.L.; SACCHETTI, R.; DAVALLI, A.; CUTTI, A.G.; GUGLIELMELLI, E.; ZOLLO, L. “Literature review on needs of upper limb prosthesis users,” Front. Neurosci., v.10, p.1, 2016. DOI: https://doi.org/10.3389/fnins.2016.00209.
POSTEMA, S.G.; BONGERS, R.M.; BROUWERS, M.A.; BURGER, H.; NORLING-HERMANSSON, L.M.; RENEMAN, M.F.; DIJKSTRA, P.U.; VAN DER SLUIS, C.K. “Upper limb absence: predictors of work participation and work productivity,” Arch. Phys. Med. Rehabil., v.97, p.892, 2016. DOI: https://doi.org/10.1016/j.apmr.2015.12.022.
BURGER, H.; VIDMAR, G. “A survey of overuse problems in patients with acquired or congenital upper limb deficiency,” Prosthet. Orthot. Int., v.40, p.497, 2016. DOI: https://doi.org/10.1177/0309364615584658.
WIDEHAMMAR, C.; PETTERSSON, I.; JANESLÄTT, G.; HERMANSSON, L. “The influence of environment: Experiences of users of myoelectric arm prosthesis—a qualitative study,” Prosthet. Orthot. Int., v.42, n.1, p.28, 2018. DOI: https://doi.org/10.1177/0309364617704801.
ARABIAN, A.; VAROTSIS, D.; MCDONNELL, C.; MEEKS, E. “Global social acceptance of prosthetic devices,” Proc. of IEEE Glob. Humanit. Technol. Conf., 13-16 Oct 2016, Seattle, USA. IEEE, 2016, p.563-568. DOI: https://doi.org/10.1109/GHTC.2016.7857336.
POSTEMA, S.G.; BONGERS, R.M.; RENEMAN, M.F.; VAN DER SLUIS, C.K. “Functional capacity evaluation in upper limb reduction deficiency and amputation: Development and pilot testing,” J. Occup. Rehabil., v.28, n.1, p.158, 2018. DOI: https://doi.org/10.1007/s10926-017-9703-4.
WONG, K.V.; HERNANDEZ, A. “A review of additive manufacturing,” ISRN Mechanical Engineering, v.2012, ID 208760, p.1, 2012. DOI: http://dx.doi.org/10.5402/2012/208760.
KATE, J.T.; SMIT, G.; BREEDVELD, P. “3D-printed upper limb prostheses: a review,” Disability and Rehabilitation: Assistive Technology, v.12, n.3, p.300, 2017. DOI: https://doi.org/10.1080/17483107.2016.1253117.
KOPRNICKY, J.; NAJMAN, P.; SAFKA, J. “3D printed bionic prosthetic hands,” Proc. of 2017 IEEE Int. Workshop on Electronics, Control, Measurement, Signals and their Application to Mechatronics, ECMSM, 24-26 May 2017, Donostia-San Sebastian, Spain. IEEE, 2017, p.1-6. DOI: https://doi.org/10.1109/ECMSM.2017.7945898.
ATZORI, M.; MÜLLER, H. “Control capabilities of myoelectric robotic prostheses by hand amputees: a scientific research and market overview,” Front. Syst. Neurosci., v.9, p.1, 2015. DOI: https://doi.org/10.3389/fnsys.2015.00162.
COWLEY, B.; FILETTI, M.; LUKANDER, K.; TORNIAINEN, J.; HENELIUS, A.; AHONEN, L.; BARRAL, O.; KOSUNEN, I.; VALTONEN, T.; HUOTILAINEN, M.; RAVAJA, N.; JACUCCI, G. “The psychophysiology primer: a guide to methods and a broad review with a focus on human-computer interaction,” in: Foundations and Trends in Human-Computer Interaction, v.9, n.3-4, p.150, 2016. DOI: https://doi.org/10.1561/1100000065.
MA, W.; ZHANG, X.; YIN, G. “Design on intelligent perception system for lower limb rehabilitation exoskeleton robot,” Proc. of IEEE 13th Int. Conf. on Ubiquitous Robot and Ambient Intelligence, 19-22 Aug 2016, Xian, China. IEEE, 2016, p.587-592. DOI: https://doi.org/10.1109/URAI.2016.7625785.
SHARMA, S.; FAROOQ, H.; CHAHAL, N. “Feature extraction and classification of surface EMG signals for robotic hand simulation,” Commun. Appl. Electron., v.4, p.27, 2016. DOI: http://doi.org/10.5120/cae2016652042.
SPANIAS, J.A.; PERREAULT, E.J.; HARGROVE, L.J. “Detection of and compensation for EMG disturbances for powered lower limb prosthesis control,” IEEE Trans. Neural Syst. Rehabil. Eng., v.24, n.2, p.226, 2016. DOI: https://doi.org/10.1109/TNSRE.2015.2413393.
GAILEY, A.; ARTEMIADIS, P.; SANTELLO, M. “Proof of concept of an online EMG-based decoding of hand postures and individual digit forces for prosthetic hand control,” Front. Neurol., v.8, p.1, 2017. DOI: https://doi.org/10.3389/fneur.2017.00007.
NA, Y.; KIM, S.J.; JO, S.; KIM, J. “Ranking hand movements for myoelectric pattern recognition considering forearm muscle structure,” Med. Biol. Eng. Comput., v.55, n.8, p.1507, 2017. DOI: https://doi.org/10.1007/s11517-016-1608-4.
ARIYANTO, M.; CAESARENDRA, W.; MUSTAQIM, K.A.; IRFAN, M.; PAKPAHAN, J.A.; SETIAWAN, J.D.; WINOTO, A.R. “Finger movement pattern recognition method using artificial neural network based on electromyography (EMG) sensor,” Proc. of Int. Conf. on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology, ICACOMIT, 29-30 Oct 2015, Bandung, Indonesia. IEEE, 2015, p.12-17. DOI: https://doi.org/10.1109/ICACOMIT.2015.7440146.
TENORE, F.V.G.; RAMOS, A.; FAHMY, A.; ACHARYA, S.; ETIENNE-CUMMINGS, R.; THAKOR, N.V. “Decoding of individuated finger movements using surface electromyography,” IEEE Trans. Biomed. Eng., v.56, n.5, p.1427, 2009. DOI: https://doi.org/10.1109/TBME.2008.2005485.
ZECCA, M.; MICERA, S.; CARROZZA, M.C.; DARIO, P. “Control of multifunctional prosthetic hands by processing the electromyographic signal,” Crit. Rev. Biomed. Eng., v.30, n.4-6, p.459, 2002. DOI: http://doi.org/10.1615/CritRevBiomedEng.v30.i456.80.
MICERA, S.; CARPANETO, J.; RASPOPOVIC, S. “Control of hand prosthesis using peripheral information,” IEEE Rev. Biomed. Eng., v.3, p.48, 2010. DOI: https://doi.org/10.1109/RBME.2010.2085429.
STRAZZULLA, I.; NOWAK, M.; CONTROZZI, M.; CIPRIANI, C.; CASTELLINI, C. “Online bimanual manipulation using surface electromyography and incremental learning,” IEEE Trans. Neural Syst. Rehabil. Eng., v.25, n.3, p.227, 2017. DOI: https://doi.org/10.1109/TNSRE.2016.2554884.
TAVAKOLI, M.; BENUSSI, C.; LOURENCO, J.L. “Single channel surface EMG control of advanced prosthetic hands: A simple, low cost and efficient approach,” Expert Syst. Appl., v.79, p.322, 2017. DOI: https://doi.org/10.1016/j.eswa.2017.03.012.
VONSEVYCH, K.P.; BEZUGLYI, M.O.; HAPONIUK, A.O. “Information-measuring system of myograph of bionic limb prosthesis,” Perspectyvni Tekhnologii ta Prylady, v.10, p.32, 2017.
HEIDERICH, M.; LEONHARDT, S.; KRANTZ, W.; NEUBECK, J.; WIEDEMANN, J. “Method for analysing the feeling of safety at high speed using virtual test drives,” Proc. of 18 Internationales Stuttgarter Symp. Wiesbaden: Springer Vieweg, 2018, p.875-886. DOI: https://doi.org/10.1007/978-3-658-21194-3_67.
HORWITZ, A. “A version of Simpson’s rule for multiple integrals,” J. Computational Applied Math., v.134, n.1-2, p.1, 2001. DOI: https://doi.org/10.1016/S0377-0427(00)00444-1.
LEVENBERG, K. “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math., v.2, n.2, p.164, 1944. URI: https://www.jstor.org/stable/43633451.
MARQUARDT, D.W. “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math., v.11, n.2, p.431, 1963. DOI: https://doi.org/10.1137/0111030.
RUMELHART, D.E.; HINTON, G.E.; WILLIAMS, R.J. “Learning representations by back-propagating errors,” Nature, v.323, p.533, 1986. DOI: https://doi.org/10.1038/323533a0.
SWETS, J.A. “Measuring the accuracy of diagnostic systems,” Science, v.240, n.4857, p.1285, 1988. DOI: http://doi.org/10.1126/science.3287615.
KIM, S.; KIM, J.; AHN, S.; KIM, Y. “Finger language recognition based on ensemble artificial neural network learning using armband EMG sensors,” Technology Health Care, v.26, n.S1, p.249, 2018. DOI: http://doi.org/10.3233/THC-174602.