Self-action of intense millimeter waves in waveguides with integrated p-i-n structures

Authors

DOI:

https://doi.org/10.3103/S0735272718030032

Keywords:

integrated p-i-n-structure, millimeter wave, self-action, bistability

Abstract

The nonlinear interaction of high power millimeter (mm) electromagnetic waves with silicon integral p-i-n structures placed in a metal waveguide is theoretically investigated. The level of double injection of charge carriers due to detection of high intensity millimeter wave electric field in p-i-n structures is estimated. A mathematical model of the mutual influence of electromagnetic waves and injected charge carriers in the active region of p-i-n structures is formulated. A numerical solution of the nonlinear Helmholtz equation supplemented by proper boundary conditions on the active region boundary is obtained. The effect of high-power electromagnetic waves leads to an excessive injection of carriers into the active region of the semiconductor between p+-i, n+-i injection junctions and redistribution of the electric field in the structure. The reflection and transmission coefficients vary rapidly with the change in the input amplitude of the electromagnetic wave. This leads to bistability of these coefficients. The bistability is more pronounced in the low-frequency part of the mm range.

References

POZAR, M. Microwave Engineering. N.Y.: Wiley, 2010.

NG KWOK, K. Complete Guide to Semiconductor Devices. N.Y.: Wiley-Interscience, 2002.

SZE, S.; NG KWOK, K. Physics of Semiconductor Devices. N.Y.: Wiley-Interscience, 2006.

GUSIATYNER, M.S. “Loss resistance of forward-biased p-i-n structures,” Elekronnaya Tekhnika, Ser. 2. Poluprovodnikovye Pribory, n.7, p.54-57, 1970.

LIBERMAN, L.S. “Resistance of p-i-n diode at microwave frequencies,” Elekronnaya Tekhnika, Ser. 2. Poluprovodnikovye Pribory, n.5, p.16-21, 1971.

MALSKIY, I.V.; SESTRORETSKIY, B.A. (eds.). Microwave Devices Based on Semiconductor Diodes. Design and Calculations [in Russian]. Moscow: Sov. Radio, 1969.

ADIROVICH, E.I.; KARAGEORGII-ALKALAEV, P.M.; LEIDERMAN, A.Y. Double-Injection Currents in Semiconductors [in Russian, ed. by Galperin]. Moscow: Sov. Radio, 1978.

KOSHEVAYA, S.V.; KISHENKO, Y.I.; SMOILOVSKII, M.I.; TRAPEZON, V.A. “High-speed broad-band modulators based on p-i-n structures (review),” Radioelectron. Commun. Syst., v.32, n.10, p.11, 1989.

GRIMALSKY, V.; KOSHEVAYA, S.; ZAMUDIO-LARA, A.; ESCOBEDO-ALATORRE, J. “Terahertz modulators based on silicon p-i-n-structures in dielectric waveguides,” Terahertz Sci. Technol., v.4, n.2, p.59-70, 2011. URI: http://www.tstnetwork.org/10.11906/TST.059-070.2011.06.08.

KOSHEVAYA, S.V.; GUTIERREZ, E.A.; MOROZ, I.; TECPOYOTL-T., M.; GRIMALSKY, V. “Injection problem in powerful quasi-optical modulator,” Proc. of Int. Conference on Microwaves and Radar, MIKON-98, 20–22 May 1998, Krakow, Poland. IEEE, 1998, v.2, p.348-350. DOI: https://doi.org/10.1109/MIKON.1998.740820.

KARUSHKIN, N.F.; KOBERIDZE, A.V.; YUNISOV, L.E. “Experimental investigation of p-i-n structures with a thick base at a high power level,” Radioelectron. Commun. Syst., v.33, n.3, p.74, 1990.

KARUSHKIN, N.F. “Millimeter-wave devices for modulation and switching,” Telecom. Radio Eng., v.63, n.7-12, p.607-619, 2005. DOI: http://doi.org/10.1615/TelecomRadEng.v63.i7.30.

ZAPOROZHETS, V.V.; KOBERIDZE, A.V.; YUNISOV, L.E.; YATSYUK, M.I. “Experimental investigation of microwave p-i-n diode attenuators at a high-power level,” Radioelectron. Commun. Syst., v.30, n.5, p.115, 1987.

VLADIMIROV, V.V.; VOLKOV, A.F.; MEYLIKHOV, E.Z. Plasma in Semiconductors [in Russian]. Moscow: Atomizdat, 1979.

YU, P.Y.; CARDONA, M. Fundamentals of Semiconductors. N.Y.: Springer, 2010.

BONCH-BRUEVICH, V.L.; KALASHNIKOV, S.G. Semiconductor Physics [in Russian]. Moscow: Nauka, 1990.

POZHELA, Y.K. Plasma and Current Instabilities in Semiconductors [in Russian]. Moscow: Nauka, 1977.

SMITH, R.A. Semiconductors, 2nd ed. Cambridge University Press, 1978.

VITLINA, R.A.; DYKHNE, A. “Reflection of electromagnetic waves from the surfaces of fine relief,” ZhETF, v.99, n.6, p.1758-1771, 1991.

PIKUS, G.E. Theoretical Fundamentals of Semiconductor Devices [in Russian]. Moscow: Nauka, 1965.

VIKULIN, I.M.; STAFEEV, V.I. Physics of Semiconductor Devices [in Russian]. Moscow: Radio i Svyaz’, 1990.

GAMAN, V.I. Physics of Semiconductor Devices [in Russian]. Tomsk: NTL, 2000.

SAMARSKIY, A.A.; GULIN, A.V. Numerical Methods [in Russian]. Moscow: Nauka, 1989.

SADIKU, M.N.O. Numerical Techniques in Electromagnetics, 2nd ed. N.Y.: CRC Press, 2000.

COLLIN, R. Field Theory of Guided Waves. N.Y.: IEEE Press, 1991.

SAMARSKIY, A.A. Theory of Differential Circuits [in Russian]. Moscow: Nauka, 1989.

GIBBS, H.M. Optical Bistability. Orlando: Academic Press, 1985.

Published

2018-03-30

Issue

Section

Research Articles