Technological fabrication features of microwave device with Schottky barriers

Authors

  • V. S. Dmitriev Zaporozhye State Engineering Academy, Ukraine
  • L. B. Dmitrieva Zaporozhye State Engineering Academy, Ukraine
  • E. Ya. Shvets Zaporozhye State Engineering Academy, Ukraine

DOI:

https://doi.org/10.3103/S073527271802005X

Keywords:

Schottky barrier, microwave device, Gallium arsenide, epitaxial film, etching, thermal treatment, contact

Abstract

At present, research and development of heterojunctions are conducted in the directions of searching for new compositions and technological regimes for the creation of ohmic and barrier transitions for gallium arsenide. The transition to silver-based metallization, which has large thermal and electrical conductivity comparing with gold and a relatively low diffusion coefficient to gallium arsenide, should improve the technical characteristics of the devices. One of the most important technological operations in the formation of Schottky ohmic contacts and barriers is thermal annealing. Silver to gallium arsenide contacts are made in vacuum by the method of thermal evaporation. The deposition and thermal treatment regimes for creating ohmic contacts of Ag–Ge–In/n–n+GaAs with specific contact resistance rc = (5...7)´10–5 W×cm2 are developed. The influence of the substrate temperature during the silver deposition and the annealing temperature on the height of the Schottky barrier Ag/n–n+GaAs, the injection coefficient g and the nonideality factor h is established.

References

BELOUS, A.I.; SOLODUKHA, V.A.; SHVEDOV, S.V. Space Electronics, 2nd book [in Russian].Moscow: Tekhnosfera, 2015.

SHVETS, E.Y.; KOLOMOETS, A.G. Estimation of prospects of application of GaAs and alloys on his basis as materials for sun elements. Metallurgy, n.30, p.132-136, 2013. URI: http://www.zgia.zp.ua/gazeta/Metallurgy_30_132.pdf.

ZAGIRNIAK, M.V.; OKSANICH, A.P.; PETRENKO, V.R.; PRITCHIN, S.E.; TERBAN, V.A. Development of modern technologies for growing structurally perfect ingots of electronic gallium arsenide. Proc. of 5th Int. Sci. Conf. on Functional Base of Nanoelectronics, Katsiveli. Kharkiv: NURE, 2012, p.5-13.

ZUEV, S.A.; KILESSA, G.V.; ASANOV, E.E.; STAROSTENKO, V.V.; POKROVA, S.V. Dependence of the conductivity on the active-region thickness in GaAs thin-film Schottky diodes. Semiconductors, v.50, n.6, p.810, 2016. DOI: https://doi.org/10.1134/S1063782616060269.

PARK, Chan Hyeong; LEE, Jong-Ho. Formulas of 1/f noise in Schottky barrier diodes under reverse bias. Solid-State Electronics, v.69, p.85, 2012. DOI: https://doi.org/10.1016/j.sse.2011.11.030.

PLATONOV, S.V.; PERMYAKOV, N.V.; SELEZNEV, B.I.; MOSHNIKOV, V.A.; KOZLOVSKIY, E.Y.; OSIPOV, A.M. Low-noise gallium-arsenide amplifiers under the influence of electromagnetic interferences of increased intensity. Bulletin of Novgorod State University, n.67, p.29, 2012. URI: http://www.novsu.ru/file/1010219.

EROFEEV, E.V. Formation of metal-semiconductor contacts with metallization on the basis of Al and Cu for GaAs microwave transistors with high electron mobility. PhD thesis, Specialization: 01.04.04 Physical electronics. Tomsk, 2012. URI: http://old.tusur.ru/export/sites/ru.tusur.new/ru/science/education/diss/2012/03/01.pdf.

KOLTSOV, G.I.; DIDENKO, S.I.; CHERNYKH, A.V.; CHERNYKH, S.V.; CHUBENKO, A.P.; SVESHNIKOV, Y.N. Schottky contacts to high-resistivity epitaxial GaAs layers for detectors of particles and X- or g-ray photons. Semiconductors, v.46, n.8, p.1066, 2012. DOI: https://doi.org/10.1134/S106378261208009X.

TECIMER, H.; TÜRÜT, A.; USLU, H.; ALTINDAL, Ş.; USLU, İ. Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs). Sensors and Actuators A: Physical, v.199, p.194, 2013. DOI: https://doi.org/10.1016/j.sna.2013.05.027.

JAYAVEL, P.; KUMAR, J.; RAMASAMY, P.; PREMANAND, R. On the evaluation of Schottky barrier diode parameters of Pd, Au and Ag/n-GaAs. Indian J. Eng. Materials Sci., v.7, n.5-6, p.340, 2000. URI: http://nopr.niscair.res.in/handle/123456789/24425.

DMITRIEV, V.S.; SHVETS, E.Y. Technological features of manufacturing a traveling wave amplifier. Proc. of 10th Int. Youth Sci. Conf. on Modern Problems of Radio Engineering and Telecommunications, RT-2014,Sevastopol. SevNTU, 2014. p.158. ISBN 978-617-612-072.

HUO, P.; REY-STOLLE, I. Ti/Pd/Ag contacts to n-type GaAs for high current density devices. J. Electronic Materials, v.45, n.6, p.2769, 2016. DOI: https://doi.org/10.1007/s11664-016-4432-6.

ÖZAVCI, E.; DEMIREZEN, S.; AYDEMIR, U.; ALTINDAL, Ş. A detailed study on current-voltage characteristics of Au/n-GaAs in wide temperature range. Sensors and Actuators A: Physical, v.194, p.259, 2013. DOI: https://doi.org/10.1016/j.sna.2013.02.018.

HUDAIT, M.K.; VENKATESWARLU, P.; KRUPANIDHI, S.B. Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures. Solid-State Electronics, v.45, n.1, p.133, 2001. DOI: https://doi.org/10.1016/S0038-1101(00)00230-6.

KORUCU, D.; TURUT, A.; ALTINDAL, Ş. The origin of negative capacitance in Au/n-GaAs Schottky barrier diodes (SBDs) prepared by photolithography technique in the wide frequency range. Current Appl. Phys., v.13, n.6, p.1101, 2013. DOI: https://doi.org/10.1016/j.cap.2013.03.001.

LEROY, W.P.; OPSOMER, K.; FORMENT, S.; VAN MEIRHAEGHE, R.L. The barrier height inhomogeneity in identically prepared Au/n-GaAs Schottky barrier diodes. Solid-State Electronics, v.49, n.6, p.878, 2005. DOI: https://doi.org/10.1016/j.sse.2005.03.005.

LV, Jing; LAI, Fachun; LIN, Limei; LIN, Yongzhong; HUANG, Zhigao; CHEN, Rong. Thermal stability of Ag films in air prepared by thermal evaporation. Appl. Surface Sci., v.253, n.17, p.7036, 2007. DOI: https://doi.org/10.1016/j.apsusc.2007.02.058.

KIM, H.C.; ALFORD, T.L. Improvement of the thermal stability of silver metallization. J. Appl. Phys., v.94, n.8, p.5393, 2003. DOI: https://doi.org/10.1063/1.1609646.

SUGAWARA, K.; KAWAMURA, M.; ABE, Y.; SASAKI, K. Comparison of the agglomeration behavior of Ag(Al) films and Ag(Au) films. Microelectron. Eng., v.84, n.11, p.2476, 2007. DOI: https://doi.org/10.1016/j.mee.2007.05.050.

KAWAMURA, M.; YAMAGUCHI, M.; ABE, Y.; SASAKI, K. Electrical and morphological change of Ag-Ni films by annealing in vacuum. Microelectron. Eng., v.82, n.3-4, p.277, 2005. DOI: https://doi.org/10.1016/j.mee.2005.07.035.

CHRISTOU, A. Solid phase formation in Au: Ge/Ni, Ag/In/Ge, In/Au: Ge GaAs ohmic contact systems. Solid-State Electronics, v.22, n.2, p.141, 1979. DOI: https://doi.org/10.1016/0038-1101(79)90106-0.

DMITRIEV, V.S.; SHVETS, E.Y.; DMITRIEVA, L.B. Technological feature of fabrication of contact to GaAs. Scientific Bulletin of KUEITM ‘New Technologies’, n.1-2, p.48, 2013.

MUREL, A.V.; DANILTSEV, V.M.; DEMIDOV, E.V.; DROZDOV, M.N.; SHASHKIN, V.I. Effect of rapid thermal annealing on the parameters of gallium-arsenide low-barrier diodes with near-surface δ-doping. Semiconductors, v.47, n.11, p.1470, 2013. DOI: https://doi.org/10.1134/S106378261311016X.

KAMPEN, T.U.; PARK, S.; ZAHN, D.R.T. Barrier height engineering of Ag/GaAs(100) Schottky contacts by a thin organic interlayer. Appl. Surface Sci., v.190, n.1-4, p.461, 2002. DOI: https://doi.org/10.1016/S0169-4332(01)00919-9.

NISKOV, V.Y. Measurement of transient resistance of ohmic contacts to thin layers of semiconductors. Instrum. Exp. Tech., n.1, p.235, 1971.

NISKOV, V.Y.; ZADDE, V.V.; ZAITSEVA, A.K.; STRELTSOVA, V.I. Measurement of transient resistance of contacts on thin layers of semiconductor. Instrum. Exp. Tech., n.2, p.240, 1971.

NISKOV, V.Y.; KUBETSKIY, G.A. Ohmic contacts resistance to a thin semiconductor layers. Semiconductors, v.4, n.9, p.1806, 1970.

SZE, S.M.; KWOK, K.N. Physics of Semiconductor Devices, 3rd ed. Hoboken: Wiley & Sons, Inc., 2006.

Published

2018-02-21

Issue

Section

Research Articles