Open Access Open Access  Restricted Access Subscription Access
The program interface for finding optimal routes based on ant colony algorithm

Wireless sensor networks based on modular arithmetic

Jingliang Chen, Vasyl V. Yatskiv, Anatoly A. Sachenko, Jun Su

Abstract


The authors propose the method for data coding in wireless sensor networks (WSN) based on the transformation of the residue number system and multipath routing. It enables to utilize efficiently the bandwidth of communication channels as well as reduce message delivery time. It is explored the ant algorithm to search an optimal route of data transmission in the wireless sensor network. There is introduced a limitation for the communication radius of the wireless unit that shorts a number of the search decision modes and improves the accuracy of the wireless network simulation. The correspondent software is designed, it allowes exploring the dynamics of finding the optimal transmission path in WSN in case of different algorithm settings, and exploring the impact of the elite ants on the accuracy of the found path.


Keywords


wireless sensor network; residue number system; multipath routing; ant algorithm

Full Text:

PDF

References


FAHMY, H.M.A. Wireless Sensor Networks. Springer, 2016. DOI: http://doi.org/10.1007/978-981-10-0412-4.

YU, KAN; GIDLUND, M.; AKERBERG, J.; BJORKMAN, M. Reliable and low latency transmission in industrial wireless sensor networks. Procedia Computer Science, v.5, p.866-873, 2011. DOI: https://doi.org/10.1016/j.procs.2011.07.120.

IEEE Standard for Part 15.4: Wireless Medium Access Control Layer (MAC) and Physical Layer (PHY) specifications for Low Rate Wireless Personal Area Networks (LR-WPANs), IEEE Std 802.15.4™, 2006.

OKDEM, S. A cross-layer adaptive mechanism for low-power wireless personal area networks. Computer Commun., v.78, p.16-27, 2016. DOI: https://doi.org/10.1016/j.comcom.2015.11.001.

SACHENKO, A.; YATSKIV, V.; KREPYCH, R. Modified method of noise-immune data transmission in wireless sensors networks. Proc. of Int. Conf. on Networks Security, Wireless Communications and Trusted Computing, NSWCTC, 25–26 Apr. 2009, Wuhan, Hubei, China. IEEE, 2009, v.2, p.847-850. DOI: https://doi.org/10.1109/NSWCTC.2009.391.

LOU, W. An efficient N-to-1 mutlipath routing protocol in wireless sensor networks. Proc. of IEEE Int. Conf. on Mobile Adhoc and Sensor Systems, 7 Nov. 2005, Washington, DC, USA. IEEE, 2005, p.664-672. DOI: https://doi.org/10.1109/MAHSS.2005.1542857.

LI, S.; ZHAO, S.; WANG, X.; ZHANG, K.; LI, L. Adaptive and secure load-balancing routing protocol for service-oriented wireless sensor networks. IEEE Systems J., v.8, n.3, p.858-867, 2014. DOI: https://doi.org/10.1109/JSYST.2013.2260626.

CHERVYAKOV, N.I.; LYAKHOV, P.A.; BABENKO, M.G.; GARYANINA, A.I.; LAVRINENKO, I.N.; LAVRINENKO, A.V.; DERYABIN, M.A. An efficient method of error correction in fault-tolerant modular neurocomputers. Neurocomputing, v.205, p.32-44, 2016. DOI: https://doi.org/10.1016/j.neucom.2016.03.041.

GUI, TINA; MA, CHRISTOPHER; WANG, FENG; WILKINS, DAWN E. Survey on swarm intelligence based routing protocols for wireless sensor networks: An extensive study. Proc. of IEEE Int. Conf. on Industrial Technology, ICIT, 14–17 Mar. 2016, Taipei, Taiwan. IEEE, 2016, p.1944-1949. DOI: https://doi.org/10.1109/ICIT.2016.7475064.

KUMAR, N.; SINGH, Y. Routing protocols in wireless sensor networks. In Handbook of Research on Advanced Wireless Sensor Network Applications, Protocols, and Architectures. 2017. DOI: http://doi.org/10.4018/978-1-5225-0486-3.ch004.

AMGOTH, T.; JANA, PRASANTA K. Energy-aware routing algorithm for wireless sensor networks. Computers & Electrical Engineering, v.41, p.357-367, 2015. DOI: https://doi.org/10.1016/j.compeleceng.2014.07.010.

LIN, CHI; WU, GUOWEI; XIA, FENG; LI, MINGCHU; YAO, LIN; PEI, ZHONGYI. Energy efficient ant colony algorithms for data aggregation in wireless sensor networks. J. Comput. Syst. Sci., v.78, n.6, p.1686-1702, 2012. DOI: https://doi.org/10.1016/j.jcss.2011.10.017.

YATSKIV, V.; SU, JUN; YATSKIV, N.; SACHENKO, A. Nonlinear data coding in wireless sensor networks. Int. J. Computing, v.10, n.4, p.383-390, 2011. http://www.computingonline.net/index.php/computing/article/view/768.

CAI, X.; DUAN, Y.; HE, Y.; YANG, J.; LI, C. Bee-sensor-C: an energy-efficient and scalable multipath routing protocol for wireless sensor networks. Int. J. Distributed Sensor Networks, v.11, n.3, p.976127, 2015. DOI: https://doi.org/10.1155/2015/976127.

MOHAN, P.V. ANANDA. Specialized residue number systems. In Residue Number Systems. Springer Int. Pub. Switzerland, 2016, p.177-193. DOI: http://doi.org/10.1007/978-3-319-41385-3.

YATSKIV, V.; SACHENKO, A.; SU, JUN. The code translator of parallel binary code into Residue Number Classes code. UA Patent 104912. Bull. Izobr., n.6, 25.03.2014.

DU, KE-LIN; SWAMY, M.N.S. Ant colony optimization. In Search and Optimization by Metaheuristics. Springer Int. Pub. Switzerland, 2016, p.191-199. DOI: http://doi.org/10.1007/978-3-319-41192-7.




DOI: https://doi.org/10.3103/S073527271705003X

Refbacks

  • There are currently no refbacks.





© Radioelectronics and Communications Systems, 2004–2017
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41