Open Access Open Access  Restricted Access Subscription Access
The cell of double-layer two-dimensionally periodic structure with metallic “sockets”

Rotation of the polarization plane by double-layer planar-chiral structures. Review of the results of theoretical and experimental studies

A. A. Kirilenko, S. A. Steshenko, V. N. Derkach, S. A. Prikolotin, D. Yu. Kulik, Sergey L. Prosvirnin, Lyudmila P. Mospan

Abstract


This article provides examples that illustrate the search for different two-layer metamaterials that provide rotation of the polarization plane (“optical activity”). Selected objects show a twenty-year history of the search for a new principle of creation of polarization rotators based on planar metamaterials that were implemented in the form of thin-layered periodic structures. The manifestation of optical activity, presence or absence of satisfactory or perfect matching, the possibility of a multiband phenomena, the role of high spatial harmonics in “electromagnetics” such effect are explained by the features of the eigen-oscillations that are excited in the gap of the multilayer structure.

Keywords


2D chirality; double-layer screen; double-layer iris; optical activity; dihedral symmetry; eigen oscillations

Full Text:

PDF

References


HOLLOWAY, C.L.; KUESTER, E.F.; GORDON, J.A.; O’HARA, J.; BOOTH, J.; SMITH, D.R. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas and Propagation Magazine, v.54, n.2, p.10-35, 2012. DOI: http://doi.org/10.1109/MAP.2012.6230714.

PENDRY, J.B. A chiral route to negative refraction. Science, v.306, n.5700, p.1353-1355, 2004. DOI: http://doi.org/10.1126/science.1104467.

ARNAUT, L.R.; DAVIS, L.E. On planar chiral structures. Progress in Electromagnetic Research Symposium, PIERS 1995, 24–28 July, Seattle, WA. 1995, p.165.

ARNAUT, L.R. Chirality in multi-dimensional space with application to electromagnetic characterisation of multi-dimensional chiral and semi-chiral media. Journal of Electromagnetic Waves and Applications, v.11, n.11, p.1459-1482, 1997. DOI: http://dx.doi.org/10.1163/156939397X00549.

PROSVIRNIN, S.L. Analysis of electromagnetic wave scattering by plane periodical array of chiral strip elements. Proc. of 7th Int. Conf. on Complex Media “Bianisotropics-98”, 3–6 June 1998. Germany: Technische Universitat Braunschweig, 1998, p.185-188. DOI: http://doi.org/10.13140/2.1.1744.1929.

PROSVIRNIN, S.L. Transformation of polarization when waves are reflected by a microstrip array made of complex-shaped elements. Journal of Communications Technology and Electronics, v.44, n.6, p.635-639, 1999.

KWON, D.-H.; WERNER, P.L.; WERNER, D.H. Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation. Optics Express, v.16, n.16, p.11802-11807, 2008. DOI: http://doi.org/10.1364/OE.16.011802.

DECKER, M.; RUTHER, M.; KRIEGLER, C.E.; ZHOU, J.; SOUKOULIS, C.M.; LINDEN, S.; WEGENER, M. Strong optical activity from twisted-cross photonic metamaterials. Optics Letters, v.34, n.16, p.2501-2503, 2009. DOI: http://doi.org/10.1364/OL.34.002501.

ROGACHEVA, A.V.; FEDOTOV, V.A.; SCHWANECKE, A.S.; ZHELUDEV, N.I. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett., v.97, p.177401, 2006. DOI: http://doi.org/10.1103/PhysRevLett.97.177401.

MACKAY, A. Proof of polarization independence and nonexistence of crosspolar terms for targets presenting n-fold (n > 2) rotational symmetry with special reference to frequency-selective surfaces. Electron. Lett., v.25, n.24, p.1624-1625, 1989. DOI: http://doi.org/10.1049/el:19891088.

SONSILPHONG, A.; GUTRUF, P.; WITHAYACHUMNANKUL, W.; ABBOTT, D.; BHASKARAN, M.; SRIRAM, S.; WONGKASEM, N. Flexible bi-layer terahertz chiral metamaterials. Journal of Optics, v.17, n.8, p.085101, 2015. DOI: http://dx.doi.org/10.1088/2040-8978/17/8/085101.

PLUM, E.; ZHOU, J.; DONG, J.; FEDOTOV, V.A.; KOSCHNY, T.; SOUKOULIS, C.M.; ZHELUDEV, N.I. Metamaterial with negative index due to chirality. Phys. Rev. B, v.79, p.035407, 2009. DOI: http://doi.org/10.1103/PhysRevB.79.035407.

ZARIFI, D.; SOLEIMANI, M.; NAYYERI, V. Dual- and multiband chiral metamaterial structures with strong optical activity and negative refraction index. IEEE Antennas Wireless Propag. Lett., v.11, p.334-337, 2012. DOI: http://doi.org/10.1109/LAWP.2012.2191261.

ZARIFI, D.; SOLEIMANI, M.; NAYYERI, V.; RASHED-MOHASSEL, J. On the miniaturization of semiplanar chiral metamaterial structures. IEEE Trans. Antennas Propag., v.60, n.12, p.5768-5776, 2012. DOI: http://doi.org/10.1109/TAP.2012.2214015.

ZARIFI, D.; SOLEIMANI, M.; NAYYERI, V. A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index. J. Electromagn. Waves Appl., v.26, p.251-263, 2012. DOI: http://dx.doi.org/10.1163/156939312800030767.

GORDON, R.; BROLO, A.G.; MCKINNON, A.; RAJORA, A.; LEATHEM, B.; KAVANAGH, K.L. Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett., v.92, n.3, p.037401, 2004. DOI: http://doi.org/10.1103/PhysRevLett.92.037401.

DERKACH, V.; KIRILENKO, A.; SALOGUB, A.; PRIKOLOTIN, S.; KOLMAKOVA, N.; OSTRIZHNYI, Y. Giant optical activity in artificial planar-chiral sructures. Proc. of Int. Kharkov Symp. MSMW’13, 23–28 Jun. 2013, Kharkov, Ukraine. IEEE, 2013, p.435-438. DOI: http://doi.org/10.1109/MSMW.2013.6622098.

LI, Z.; ZHAO, R.; KOSCHNY, T.; KAFESAKI, M.; ALICI, KAMIL BORATAY; COLAK, E.; CAGLAYAN, H.; OZBAY, E.; SOUKOULIS, C.M. Chiral metamaterials with negative refractive index based on four ‘U’ split ring resonators. Appl. Phys. Lett., v.97, p.081901, 2010. DOI: http://dx.doi.org/10.1063/1.3457448.

KIRILENKO, A.; KOLMAKOVA, N.; PRIKOLOTIN, S. Plane-chiral pair with opposite rotatios as a new way to rotate polarization up to 90°, Proc. of Int. Conf. MMET, 28–30 Aug. 2012, Kharkiv, Ukraine. IEEE, 2012, p.80-83. DOI: http://doi.org/10.1109/MMET.2012.6331155.

KOLMAKOVA, N.; PRIKOLOTIN, S.; PEROV, A.; DERKACH, V.; KIRILENKO, A. Polarization plane rotation by arbitrary angle using D4 symmetrical structures. IEEE Trans. Microwave Theory Tech., v.64, n.2, p.429-435, 2016. DOI: http://doi.org/10.1109/TMTT.2015.2509966.

LI, Z.; CAGLAYAN, H.; COLAK, E.; ZHOU, J.; SOUKOULIS, COSTAS M.; OZBAY, E. Coupling effect between two adjacent chiral structure layers. Optics Express, v.18, n.6, p.5375-5383, 2010. DOI: http://doi.org/10.1364/OE.18.005375.

MASLOVSKI, S.I.; MORITS, D.K.; TRETYAKOV, S.A. Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles. J. Opt. A, Pure Appl. Opt., v.11, n.7, p.074004, 2009. DOI: https://doi.org/10.1088/1464–4258/11/7/074004.

KOLMAKOVA, N.G.; KIRILENKO, A.A.; PROSVIRIN, S.L. Planar chiral irises in a square waveguide and “optical activity” manifestations. Radio Physics and Radio Astronomy, v.2, n.3, p.255-264, 2011. DOI: http://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i3.70.

KIRILENKO, A.; SENKEVICH, S.; TYSIC, B. Regularities of resonance phenomena in open structures of waveguide type. Radiotekh. Elektron., v.35, n.4, p.687-694, 1990.

CORNWELL, J.F. Appendix C: Character tables for the crystallographic point groups. In: Group Theory in Physics: An Introduction. New York: Academic, 1997.

KOLMAKOVA, N.; PRIKOLOTIN, S.; KIRILENKO, A.; PEROV, A. Simple example of polarization plane rotation by the fringing fields interaction. Proc. of European Microwave Conf., 6–10 Oct. 2013, Nuremberg. IEEE, 2013, p.936-938. URL: http://ieeexplore.ieee.org/document/6686812/.

KIRILENKO, A.A.; KOLMAKOVA, N.G.; PRIKOLOTIN, S.A. Ultra-compact 90° twist based on a pair of two closely placed flat chiral irises. Radioelectron. Commun. Syst., v.55, n.4, p.175-177, 2012. DOI: http://dx.doi.org/10.3103/S073527271204005X.

KIRILENKO, A.A.; PEROV, A.O. On the common nature of the enhanced and resonance transmission through the periodical set of holes. IEEE Trans. Antennas Propag., v.56, n.10, p.3210-3216, 2008. DOI: https://doi.org/10.1109/TAP.2008.929437.

KOLMAKOVA, N.G.; PEROV, ANDREY O.; SENKEVICH, S.L.; KIRILENKO, A.A. Abnormal propagation of EMW through below cutoff holes and intrinsic oscillations of waveguide objects and periodic structures. Radioelectron. Commun. Syst., v.54, n.3, p.115-123, 2011. DOI: http://dx.doi.org/10.3103/S0735272711030010.

KIRILENKO, A.A.; TYSIK, B.G. Connection of S-matrix of waveguide and periodical structures with complex frequency spectrum. Electromagnetics, v.13, n.3, p.301-318, 1993. DOI: http://dx.doi.org/10.1080/02726349308908352.

MUNK, B.A. Frequency Selective Surfaces: Theory and Design. New York: Wiley, 2000.

PEROV, A.O.; KIRILENKO, A.A.; DERKACH, V.N. Polarization response manipulation for compound circular hole fishnet metamaterial. IEEE Antennas Wireless Propag. Lett., v.16, p.117-120, 2016. DOI: https://doi.org/10.1109/LAWP.2016.2559452.

KULIK, D.Y.; MOSPAN, L.P.; PEROV, A.O.; KOLMAKOVA, N.G. Compact-size polarization rotators on the basis of irises with rectangular slots. Telecom. Radio Eng., v.75, n.10, p.857-865, 2016. DOI: http://doi.org/10.1615/TelecomRadEng.v75.i10.10.

KULIK, D.Y.; STESHENKO, D.Y.; KIRILENKO, A.A. Compact polarization plane rotators on the given angle in square waveguide. Radiofiz. Elektron., v.22, n.1, p.15, 2017.




DOI: https://doi.org/10.3103/S0735272717050016

Refbacks

  • There are currently no refbacks.





© Radioelectronics and Communications Systems, 2004–2017
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41