Rotation of the polarization plane by double-layer planar-chiral structures. Review of the results of theoretical and experimental studies

Authors

  • A. A. Kirilenko Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-8717-5334
  • S. A. Steshenko Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0003-4777-3927
  • V. N. Derkach Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine
  • S. A. Prikolotin Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine
  • D. Yu. Kulik Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-9059-2710
  • Sergey L. Prosvirnin Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-9205-3761
  • Lyudmila P. Mospan Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-4895-1409

DOI:

https://doi.org/10.3103/S0735272717050016

Keywords:

2D chirality, double-layer screen, double-layer iris, optical activity, dihedral symmetry, eigen oscillations

Abstract

This article provides examples that illustrate the search for different two-layer metamaterials that provide rotation of the polarization plane (“optical activity”). Selected objects show a twenty-year history of the search for a new principle of creation of polarization rotators based on planar metamaterials that were implemented in the form of thin-layered periodic structures. The manifestation of optical activity, presence or absence of satisfactory or perfect matching, the possibility of a multiband phenomena, the role of high spatial harmonics in “electromagnetics” such effect are explained by the features of the eigen-oscillations that are excited in the gap of the multilayer structure.

References

HOLLOWAY, C.L.; KUESTER, E.F.; GORDON, J.A.; O’HARA, J.; BOOTH, J.; SMITH, D.R. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas and Propagation Magazine, v.54, n.2, p.10-35, 2012. DOI: http://doi.org/10.1109/MAP.2012.6230714.

PENDRY, J.B. A chiral route to negative refraction. Science, v.306, n.5700, p.1353-1355, 2004. DOI: http://doi.org/10.1126/science.1104467.

ARNAUT, L.R.; DAVIS, L.E. On planar chiral structures. Progress in Electromagnetic Research Symposium, PIERS 1995, 24–28 July, Seattle, WA. 1995, p.165.

ARNAUT, L.R. Chirality in multi-dimensional space with application to electromagnetic characterisation of multi-dimensional chiral and semi-chiral media. Journal of Electromagnetic Waves and Applications, v.11, n.11, p.1459-1482, 1997. DOI: http://dx.doi.org/10.1163/156939397X00549.

PROSVIRNIN, S.L. Analysis of electromagnetic wave scattering by plane periodical array of chiral strip elements. Proc. of 7th Int. Conf. on Complex Media “Bianisotropics-98”, 3–6 June 1998. Germany: Technische Universitat Braunschweig, 1998, p.185-188. DOI: http://doi.org/10.13140/2.1.1744.1929.

PROSVIRNIN, S.L. Transformation of polarization when waves are reflected by a microstrip array made of complex-shaped elements. Journal of Communications Technology and Electronics, v.44, n.6, p.635-639, 1999.

KWON, D.-H.; WERNER, P.L.; WERNER, D.H. Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation. Optics Express, v.16, n.16, p.11802-11807, 2008. DOI: http://doi.org/10.1364/OE.16.011802.

DECKER, M.; RUTHER, M.; KRIEGLER, C.E.; ZHOU, J.; SOUKOULIS, C.M.; LINDEN, S.; WEGENER, M. Strong optical activity from twisted-cross photonic metamaterials. Optics Letters, v.34, n.16, p.2501-2503, 2009. DOI: http://doi.org/10.1364/OL.34.002501.

ROGACHEVA, A.V.; FEDOTOV, V.A.; SCHWANECKE, A.S.; ZHELUDEV, N.I. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett., v.97, p.177401, 2006. DOI: http://doi.org/10.1103/PhysRevLett.97.177401.

MACKAY, A. Proof of polarization independence and nonexistence of crosspolar terms for targets presenting n-fold (n > 2) rotational symmetry with special reference to frequency-selective surfaces. Electron. Lett., v.25, n.24, p.1624-1625, 1989. DOI: http://doi.org/10.1049/el:19891088.

SONSILPHONG, A.; GUTRUF, P.; WITHAYACHUMNANKUL, W.; ABBOTT, D.; BHASKARAN, M.; SRIRAM, S.; WONGKASEM, N. Flexible bi-layer terahertz chiral metamaterials. Journal of Optics, v.17, n.8, p.085101, 2015. DOI: http://dx.doi.org/10.1088/2040-8978/17/8/085101.

PLUM, E.; ZHOU, J.; DONG, J.; FEDOTOV, V.A.; KOSCHNY, T.; SOUKOULIS, C.M.; ZHELUDEV, N.I. Metamaterial with negative index due to chirality. Phys. Rev. B, v.79, p.035407, 2009. DOI: http://doi.org/10.1103/PhysRevB.79.035407.

ZARIFI, D.; SOLEIMANI, M.; NAYYERI, V. Dual- and multiband chiral metamaterial structures with strong optical activity and negative refraction index. IEEE Antennas Wireless Propag. Lett., v.11, p.334-337, 2012. DOI: http://doi.org/10.1109/LAWP.2012.2191261.

ZARIFI, D.; SOLEIMANI, M.; NAYYERI, V.; RASHED-MOHASSEL, J. On the miniaturization of semiplanar chiral metamaterial structures. IEEE Trans. Antennas Propag., v.60, n.12, p.5768-5776, 2012. DOI: http://doi.org/10.1109/TAP.2012.2214015.

ZARIFI, D.; SOLEIMANI, M.; NAYYERI, V. A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index. J. Electromagn. Waves Appl., v.26, p.251-263, 2012. DOI: http://dx.doi.org/10.1163/156939312800030767.

GORDON, R.; BROLO, A.G.; MCKINNON, A.; RAJORA, A.; LEATHEM, B.; KAVANAGH, K.L. Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett., v.92, n.3, p.037401, 2004. DOI: http://doi.org/10.1103/PhysRevLett.92.037401.

DERKACH, V.; KIRILENKO, A.; SALOGUB, A.; PRIKOLOTIN, S.; KOLMAKOVA, N.; OSTRIZHNYI, Y. Giant optical activity in artificial planar-chiral sructures. Proc. of Int. Kharkov Symp. MSMW’13, 23–28 Jun. 2013, Kharkov, Ukraine. IEEE, 2013, p.435-438. DOI: http://doi.org/10.1109/MSMW.2013.6622098.

LI, Z.; ZHAO, R.; KOSCHNY, T.; KAFESAKI, M.; ALICI, KAMIL BORATAY; COLAK, E.; CAGLAYAN, H.; OZBAY, E.; SOUKOULIS, C.M. Chiral metamaterials with negative refractive index based on four ‘U’ split ring resonators. Appl. Phys. Lett., v.97, p.081901, 2010. DOI: http://dx.doi.org/10.1063/1.3457448.

KIRILENKO, A.; KOLMAKOVA, N.; PRIKOLOTIN, S. Plane-chiral pair with opposite rotatios as a new way to rotate polarization up to 90°, Proc. of Int. Conf. MMET, 28–30 Aug. 2012, Kharkiv, Ukraine. IEEE, 2012, p.80-83. DOI: http://doi.org/10.1109/MMET.2012.6331155.

KOLMAKOVA, N.; PRIKOLOTIN, S.; PEROV, A.; DERKACH, V.; KIRILENKO, A. Polarization plane rotation by arbitrary angle using D4 symmetrical structures. IEEE Trans. Microwave Theory Tech., v.64, n.2, p.429-435, 2016. DOI: http://doi.org/10.1109/TMTT.2015.2509966.

LI, Z.; CAGLAYAN, H.; COLAK, E.; ZHOU, J.; SOUKOULIS, COSTAS M.; OZBAY, E. Coupling effect between two adjacent chiral structure layers. Optics Express, v.18, n.6, p.5375-5383, 2010. DOI: http://doi.org/10.1364/OE.18.005375.

MASLOVSKI, S.I.; MORITS, D.K.; TRETYAKOV, S.A. Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles. J. Opt. A, Pure Appl. Opt., v.11, n.7, p.074004, 2009. DOI: https://doi.org/10.1088/1464–4258/11/7/074004.

KOLMAKOVA, N.G.; KIRILENKO, A.A.; PROSVIRIN, S.L. Planar chiral irises in a square waveguide and “optical activity” manifestations. Radio Physics and Radio Astronomy, v.2, n.3, p.255-264, 2011. DOI: http://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i3.70.

KIRILENKO, A.; SENKEVICH, S.; TYSIC, B. Regularities of resonance phenomena in open structures of waveguide type. Radiotekh. Elektron., v.35, n.4, p.687-694, 1990.

CORNWELL, J.F. Appendix C: Character tables for the crystallographic point groups. In: Group Theory in Physics: An Introduction. New York: Academic, 1997.

KOLMAKOVA, N.; PRIKOLOTIN, S.; KIRILENKO, A.; PEROV, A. Simple example of polarization plane rotation by the fringing fields interaction. Proc. of European Microwave Conf., 6–10 Oct. 2013, Nuremberg. IEEE, 2013, p.936-938. URL: http://ieeexplore.ieee.org/document/6686812/.

KIRILENKO, A.A.; KOLMAKOVA, N.G.; PRIKOLOTIN, S.A. Ultra-compact 90° twist based on a pair of two closely placed flat chiral irises. Radioelectron. Commun. Syst., v.55, n.4, p.175-177, 2012. DOI: http://dx.doi.org/10.3103/S073527271204005X.

KIRILENKO, A.A.; PEROV, A.O. On the common nature of the enhanced and resonance transmission through the periodical set of holes. IEEE Trans. Antennas Propag., v.56, n.10, p.3210-3216, 2008. DOI: https://doi.org/10.1109/TAP.2008.929437.

KOLMAKOVA, N.G.; PEROV, ANDREY O.; SENKEVICH, S.L.; KIRILENKO, A.A. Abnormal propagation of EMW through below cutoff holes and intrinsic oscillations of waveguide objects and periodic structures. Radioelectron. Commun. Syst., v.54, n.3, p.115-123, 2011. DOI: http://dx.doi.org/10.3103/S0735272711030010.

KIRILENKO, A.A.; TYSIK, B.G. Connection of S-matrix of waveguide and periodical structures with complex frequency spectrum. Electromagnetics, v.13, n.3, p.301-318, 1993. DOI: http://dx.doi.org/10.1080/02726349308908352.

MUNK, B.A. Frequency Selective Surfaces: Theory and Design. New York: Wiley, 2000.

PEROV, A.O.; KIRILENKO, A.A.; DERKACH, V.N. Polarization response manipulation for compound circular hole fishnet metamaterial. IEEE Antennas Wireless Propag. Lett., v.16, p.117-120, 2016. DOI: https://doi.org/10.1109/LAWP.2016.2559452.

KULIK, D.Y.; MOSPAN, L.P.; PEROV, A.O.; KOLMAKOVA, N.G. Compact-size polarization rotators on the basis of irises with rectangular slots. Telecom. Radio Eng., v.75, n.10, p.857-865, 2016. DOI: http://doi.org/10.1615/TelecomRadEng.v75.i10.10.

KULIK, D.Y.; STESHENKO, D.Y.; KIRILENKO, A.A. Compact polarization plane rotators on the given angle in square waveguide. Radiofiz. Elektron., v.22, n.1, p.15, 2017.

Published

2017-05-29

Issue

Section

Review Articles