Open Access Open Access  Restricted Access Subscription Access
Debug kit ADZS-21469-EZLite for implementing the ALF with band MPR

Estimation of the energy spectrums of reflections in pulse Doppler weather radars. Part 3. Statistical analysis of the reconstruction techniques of continuous spectrums of the reflections from meteorological objects

David I. Lekhovytskiy, Dmytro V. Atamanskiy, Dmytro S. Rachkov, Andrii V. Semeniaka

Abstract


This is the third paper in a series of papers dedicated to the peculiarities of estimation of the continuous energy spectrums of random processes of different nature, which are determined by their samples at discrete moments of time. In the article we justify the methodology and present the quantitative results of analytical and experimental investigation and comparison of statistical characteristics of classical and “parametric” methods of energy spectrums reconstruction for interperiod fluctuations of different nature reflections (including the ones from meteorological objects) in pulse radars. The methodology is followed by quantitative results which correspond to and obtained for a real-world “adaptive” case. Under the latter, a priori unknown echoes’ covariance matrix is replaced with different-kind estimates formed from finite-size training samples. Based on the results obtained, we substantiate the spectral estimation algorithms reasonable for utilization in different-purpose radars, in particular in pulse Doppler weather ones. Discussion of efficient ways for their practical implementation on a unified basis of adaptive lattice filters concludes the paper.

Keywords


autoregressive process; energy spectrum; spectral estimation methods; spectral function; adaptive lattice filter; correlation matrix; maximum likelihood estimate; Burg method of maximal entropy; Capon method of minimal variance

Full Text:

PDF

References


LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; RACHKOV, D.S.; SEMENIAKA, A.V. Estimation of the energy spectrums of reflections in pulse Doppler weather radars. Part 1. Modifications of the spectral estimation algorithms. Radioelectron. Commun. Syst., v.58, n.12, p.523-550, 2015. DOI: http://dx.doi.org/10.20535/S0021347015120018.

LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; RACHKOV, D.S.; SEMENIAKA, A.V. Estimation of the energy spectrums of reflections in pulse Doppler weather radars. Part 2. Extreme performance. Radioelectron. Commun. Syst., v.59, n.9, p.379-396, 2016. DOI: http://dx.doi.org/10.20535/S0021347016090016.

REED, I.S.; MALLETT, J.D.; BRENNAN, L.E. Rapid convergence rate in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst., v.AES-10, n.6, p.853-863, 1974. DOI: http://dx.doi.org/10.1109/TAES.1974.307893.

ABRAMOVICH, Y.I.; NEVREV, A.I. The analysis of adaptive maximization of signal-to-interference ratio, which uses the inversion of estimate of the correlation matrix. Radiotekh. Elektron., v.26, n.12, p.2558-2566, 1981.

ABRAMOVICH, YURI I.; SPENCER, NICHOLAS K.; JOHNSON, BEN A. Band-inverse TVAR covariance matrix estimation for adaptive detection. IEEE Trans. Aerosp. Electron. Syst., v.46, n.1, p.375-396, 2010. DOI: http://dx.doi.org/10.1109/TAES.2010.5417169.

LEKHOVYTSKIY, D.; ABRAMOVICH, Y. Adaptive lattice filters for band-inverse (TAVR) covariance matrix approximations. Proc. of Int. Radar Symp. IRS2009, 09-11 Sept. 2009, Hamburg, Germany. Hamburg, 2009, p.535-539.

LEKHOVYTSKIY, D.I.; ABRAMOVICH, Y.I.; ZHUGA, G.A.; RACHKOV, D.S. Band-diagonal regularization of ML estimates of the correlation matrices of Gaussian interferences in the adaptation algorithms of antenna arrays. Applied Radio Electronics, v.9, n.1, p.107-121, 2010.

ABRAMOVICH, YURI I.; SPENCER, NICHOLAS K.; GOROKHOV, ALEXEI Y. A modified GLRT and AMF framework for adaptive detectors. IEEE Trans. Aerosp. Electron. Syst., v.43, n.3, p.1017-1051, 2007. DOI: http://dx.doi.org/10.1109/TAES.2007.4383590.

BURG, J.P. A new analysis technique for time series data. In: Modern Spectrum Analysis. IEEE Press, 1978 [ed. by D. G. Childers], p.42-48.

FRIEDLANDER, B. Lattice filters for adaptive processing. Proc. IEEE, v.70, n.8, p.829-867, 1982. DOI: http://doi.org/10.1109/PROC.1982.12407.

FRIEDLANDER, B. Lattice methods for spectral estimation. Proc. IEEE, v.70, n.9, p.990-1017, 1982. DOI: http://doi.org/10.1109/PROC.1982.12429.

COWAN, C.F.N.; GRANT, P.M. Adaptive Filters. Englewood Cliffs, New Jersey: Prentice Hall Inc., 1985.

SEMENIAKA, A.V.; LEKHOVYTSKIY, D.I.; RACHKOV, D.S. Comparative analysis of Toeplitz covariance matrix estimation methods for space-time adaptive signal processing. Proc. of IEEE CIE Int. Conf. on Radar, RADAR-2011, 24-27 Oct. 2011, Chengdu, China. IEEE, 2011, p.696-699, DOI: http://dx.doi.org/10.1109/CIE-Radar.2011.6159636.

HASTINGS, N.A.J.; PEACOCK, J.B. Statistical Distributions. London: Butterworth and Co Ltd, 1975.

NITZBERG, RAMON. Application of maximum likelihood estimation of persymmetric covariance matrices to adaptive processing. IEEE Trans. Aerosp. Electron. Syst., v.AES-16, n.1, p.124-127, 1980. DOI: http://dx.doi.org/10.1109/TAES.1980.308887.

ABRAMOVICH, Y.I. The regularized method of adaptive optimization using the criterion of signal-to-interference ratio. Radiotekh. Elektron., v.26, n.3, p.543-551, 1981.

LEKHOVYTSKIY, D.I.; ZARYTSKIY, V.I.; RAKOV, I.D.; ET AL. Methods of adaptive lattice filtration in the problems of space-time signal processing [in Russian]. Moscow: RTI AS USSR, 1987.

LEKHOVYTSKIY, D.I.; POLISHKO, S.V.; ZHUGA, G.A. On the strategy of utilization of ML estimates of CM in multichannel systems of adaptive signal processing on the noise background. Proc. of I Int. Sci. Conf. on Global Information Systems. Problems and Development Trends, 2006, Kharkiv-Tuapse, Ukraine. 2006, p.444-445.

LEKHOVYTSKIY, D.I.; RIABUKHA, V.P.; ZHUGA, G.A.; RACHKOV, D.S. Moving target selection in pulse radar stations. Part 3. Structures, parameters and efficiency of quasioptimal systems of interperiod processing of Gaussian signals on the background of Gaussian passive interferences. Applied Radio Electronics, v.8, n.2, p.109-123, 2009.

LEKHOVYTSKIY, D.I.; RIABUKHA, V.P.; ZHUGA, G.A.; LAVRENTIEV, V.N. Experimental investigations of moving target selection systems based on adaptive lattice filters in the pulse radar stations with batch-to-batch staggering of pulse repetition times. Applied Radio Electronics, v.7, n.1, p.3-16, 2008.

STRATONOVICH, R.L. Foundations of Adaptive Reception [in Russian]. Moscow: Sov. Radio, 1973.

ABRAMOVICH, YURI I.; SPENCER, NICHOLAS K.; TURLEY, MICHAEL D.E. Order estimation and discrimination between stationary and time-varying (TVAR) autoregressive models. IEEE Trans. Signal Process., v.55, n.6, p.2861-2876, 2007. DOI: http://dx.doi.org/10.1109/TSP.2007.893966.

WIDROW, B.; STEARNS, S.D. Adaptive Signal Processing. Englewood Cliffs, New Jersey: Prentice Hall Inc., 1985.

MONZINGO, R.A.; MILLER, T.W. Introduction to Adaptive Arrays. New York: John Wiley & Sons, 1980.

KOKIN, V.N.; TEMEROV, A.V.; FEDININ, V.V. The utilization of current estimate of the inverse correlation matrix of interferences in the adaptive detector. Radiotekh. Elektron., v.25, n.7, p.1540-1542, 1980.

GIRAUDON, C. US Patent No. 3876947, 1975.

LEKSACHENKO, V.A.; SHATALOV, A.A. The synthesis of multidimensional “whitening” filter using Gram-Schmidt method. Radiotekh. Elektron., v.21, n.1, p.112-119, 1976.

BONDARENKO, B.F.; PROKOFIEV, V.P. The utilization of functional analysis techniques for the solution of synthesis problems for the system of space-time signal processing. Radioelectron. Commun. Syst., v.25, n.7, p.12-16, 1982.

SHIRMAN, Y.D.; MANZHOS, V.N. Theory and Techniques of Radiolocation Information Processing on the Noise Background [in Russian]. Moscow: Radio i Svyaz’, 1981.

LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; RACHKOV, D.S.; SEMENIAKA, A.V. Spectral analysis of reflections in Doppler weather radars. Proc. of XVII Int. Sci. and Tech. Conf. on Radiolocation, Navigation, Communications, 2011, Voronezh, Russia. 2011, p.1968-1979.

LEKHOVYTSKIY, D.I.; RIABUKHA, V.P.; ZHUGA, G.A.; RACHKOV, D.S.; SEMENIAKA, A.V. Moving target selection in pulse radar stations. Part 5. Adaptive systems of interperiod processing of Gaussian signals on the background of Gaussian passive interferences. Applied Radio Electronics, v.10, n.4, p.506-525, 2011.

EFREMOV, V.; LAURUKEVICH, V.; LEKHOVYTSKY, D.; VYLEGZHANIN, I.; VOVSHIN, B. Results of theoretical and experimental investigations of meteorological formation power spectrum using “superresolution” methods. Proc. of Int. Radar Symp. IRS2009, 09-11 Sept. 2009, Hamburg, Germany. Hamburg, 2009, p.777-784.

LAURUKEVICH, V.; PUSHKOV, A.; VYLEGZHANIN, I.; ET AL. Estimation of energy, spectral and polarimetric characteristics of meteorological echoes in DMRL-C. Proc. of Int. Radar Symp. IRS2011, 7-9 Sept. 2011, Leipzig, Germany. Leipzig, 2011, p.267-272.

EFREMOV, V.; Vylegzhanin, I.; Vovshin, B. The new generation of Russian C-band meteorological radars. Technical features, operation modes and algorithms. Proc. of Int. Radar Symp. IRS2011, 7-9 Sept. 2011, Leipzig, Germany. Leipzig, 2011, p.239-244.

LEKHOVYTSKIY, D.I.; RACHKOV, D.S.; SEMENIAKA, A.V.; ET AL. Statistical analysis of estimation accuracy of the meteorological formations parameters in pulsed Doppler weather radars with arbitrary staggering of pulse repetition intervals. Proc. of Int. Radar Symp. IRS2011, 7-9 Sept. 2011, Leipzig, Germany. Leipzig, 2011, p.273-278.

LAURUKEVICH, V.; PUSHKOV, A.; VOVSHIN, B.; VYLEGZHANIN, I. The results of field tests of russian meteorological radar ‘DMRL-C’. Proc. of the IV Int. Radioelectronics Forum, Kharkiv, Ukraine. Kharkiv, 2011, v.1, p.7-12.

BURG, J.P.; LUENBERGER, D.G.; WENGER, D.L. Estimation of structured covariance matrices. Proc. IEEE, v.70, n.9, p.963-974, 1982. DOI: http://doi.org/10.1109/PROC.1982.12427.

LEKHOVYTSKIY, D.I.; RACHKOV, D.S.; SEMENIAKA, A.V.; RIABUKHA, V.P.; ATAMANSKIY, D.V. Adaptive lattice filters. Part I. Theory of lattice structures. Applied Radio Electronics, v.10, n.4, p.380-404, 2011.

LEKHOVYTSKIY, D.I.; RACHKOV, D.S.; SEMENIAKA, A.V.; RIABUKHA, V.P.; ATAMANSKIY, D.V. Adaptive lattice filters. Part II. Tuning algorithms for ALF. Applied Radio Electronics, v.10, n.4, p.405-418, 2011.

LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; RACHKOV, D.S.; SEMENIAKA, A.V. Improvement of accuracy of meteorological objects velocity unambiguous measurement in Doppler weather radars with staggered pulse repetition times. Radioelectron. Commun. Syst., v.58, n.9, p.385-403, 2015. DOI: http://dx.doi.org/10.20535/S0021347015090010.

LEKHOVYTSKIY, D.I. To the theory of adaptive signal processing in systems with centrally symmetric receive channels. EURASIP J. Advances Signal Process., v.33, p.1-11, 2016. DOI: http://dx.doi.org/10.1186/s13634-016-0329-z.

LEKHOVYTSKIY, D.I.; ATAMANSKIY, D.V.; KIRILLOV, I.G.; ZARITSKIY, V.I. Comparison of efficiency of adaptive processing in arbitrary and centrally symmetric phased array antennas. Antennas, n.1, p.30-35, 2000.

RIABUKHA, V.P. Adaptive systems of radar stations noise protection. Part 1. Correlation automatic compensators based on stochastic gradient adaptation algorithms. Applied Radio Electronics, v.15, n.1, p.11-25, 2016.

LEKHOVYTSKIY, D.I. Thirty years experience in development of adaptive lattice filters theory, techniques and testing in Kharkiv. Proc. of VIII Int. Conf. on Antenna Theory and Techniques, ICATT2011, 20-23 Sept. 2011, Kyiv, Ukraine. IEEE, 2011, p.51-56. DOI: http://dx.doi.org/10.1109/ICATT.2011.6170713.

SAYED, A.H. Fundamentals of Adaptive Filtering. NJ, Hoboken: John Wiley and Sons Inc., 2003.

DJIGAN, V.I. Adaptive Signal Filtering [in Russian]. Moscow: Tehnosfera, 2013.

RACHKOV, DMYTRO S.; LEKHOVYTSKIY, DAVID I.; SEMENIAKA, ANDRII V.; VOVSHIN, BORIS M.; LAURUKEVICH, ULADZIMIR U. Lattice implementation of ‘superresolving’ methods for meteorological objects spectra estimation. Proc. of 15th Int. Radar Symp. IRS 2014, 16-18 June 2014, Gdansk, Poland. IEEE, 2014, p.35-38. DOI: http://dx.doi.org/10.1109/IRS.2014.6869229.

RACHKOV, DMYTRO S.; LEKHOVYTSKIY, DAVID I. Lattice-filter-based unified structure of system for interperiod processing of weather radar signals. Proc. of IEEE Int. Radar Conf., 10-15 May 2015, Arlington, USA. IEEE, 2015, p.1234-1239. DOI: http://dx.doi.org/10.1109/RADAR.2015.7131183.

LEKHOVYTSKIY, DAVID I.; RACHKOV, DMYTRO S.; SEMENIAKA, ANDRII V. K-rank modification of adaptive lattice filter parameters. Proc. of IEEE Int. Radar Conf., 10-15 May 2015, Arlington, USA. IEEE, 2015, p.127-132. DOI: http://dx.doi.org/10.1109/RADAR.2015.7130983.

LEKHOVYTSKIY, D.I.; RIABUKHA, V.P.; RACHKOV, D.S.; SEMENIAKA, A.V. Recursive algorithms of adaptive lattice filters adjustment. Tehnologiya i Konstruirovanie v Elektronnoi Apparature, n.2-3, p.26-32, 2016. DOI: http://dx.doi.org/10.15222/TKEA2016.2-3.26.

LEV-ARI, H.; KAILATH, T. Schur and Levinson algorithms for nonstationary processes. Proc. of IEEE Int. Conf. on Acoustic, Speech and Signal Processing, ICASSP, 30 Mar.-1 Apr. 1981, Atlanta, CA, USA. IEEE, 1981, p.860-864. DOI: http://dx.doi.org/10.1109/ICASSP.1981.1171194.

SHARMAN, K.C.; DURRANI, T.S. Spatial lattice filter for high-resolution spectral analysis of array data. IEE Proc. F: Commun. Radar Signal Process., v.130, n.3, p.279-287, 1983. DOI: http://dx.doi.org/10.1049/ip-f-1:19830047.

RACHKOV, DMYTRO S.; LEKHOVYTSKIY, DAVID I.; SEMENIAKA, ANDRII V.; RIABUKHA, VIACHESLAV P.; ATAMANSKIY, DMYTRO V. Lattice-filter-based ground clutter canceller for pulse Doppler weather radar. Proc. of 15th Int. Radar Symp. IRS 2014, 16-18 June 2014, Gdansk, Poland. IEEE, 2014, p.215-219. DOI: http://dx.doi.org/10.1109/IRS.2014.6869251.




DOI: https://doi.org/10.3103/S0735272717020017

Refbacks

  • There are currently no refbacks.





© Radioelectronics and Communications Systems, 2004–2017
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41