Structural adaptation of the turbo code coder and decoder for generating the transmission repeat request under conditions of uncertainty

Authors

DOI:

https://doi.org/10.3103/S0735272717010034

Keywords:

turbo code, uncertainty, simulation modeling

Abstract

The paper deals with the issue of enhancing the performance efficiency of wireless networks built by using the with automatic repeat request scheme for retransmission. The proposed method is based on adaptive change of polynomials of recursive systematic convolutional codes forming a part of turbo codes and aimed at enhancing their correcting properties at the expense of increasing the code limitation at each data block retransmission for the set coding rate. In this case, the decoding algorithm of turbo codes is modified in respect of using the introduced additional a priori information during the calculation of logarithmic ratios of likelihood functions or log-likelihood ratios (LLR) for each component decoder obtained during the earlier repeat requests for retransmission. The results of simulation modeling showed that the application of this technique made it possible to obtain the energy gain in coding and enhance the data transmission accuracy as compared to the fourth generation mobile communication system, such as 4G LTE-Advanced.

References

IEEE 802.16e: Air Interface for Fixed and Mobile Broadband Wireless Access Systems. IEEE Standard 802.16e, 2004.

IEEE 802.11n, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 5: Enhancements for Higher Throughput. IEEE Standard 802.11n-2009, 2009.

3GPP TS 36.212. “Evolved Terrestrial Radio Access (E-UTRA); Multiplexing and Channel Coding”. 3GPP Technical Specification Group Radio Access Network, April 2011.

LIN, ZIHUAI; SVENSSON, A. New rate-compatible repetition convolutional codes. IEEE Trans. Inf. Theory, v.46, n.7, p.2651-2659, 2000. doi:http://dx.doi.org/10.1109/18.887877.

CAIN, J.; CLARK, G.; GEIST, J. Punctured convolutional codes of rate (n–1)/n and simplified maximum likelihood decoding. IEEE Trans. Inf. Theory, v.25, n.1, p.97-100, 1979. doi:http://dx.doi.org/10.1109/TIT.1979.1055999.

HAGENAUER, J. Rate-compatible punctured convolutional codes (RCPC codes) and their applications. IEEE Trans. Commun., v.36, n.4, p.389-400, 1988. doi:http://dx.doi.org/10.1109/26.2763.

XU, W.; ROMME, J. A class of multirate convolutional codes by dummy bit insertion. Proc. of IEEE Conf. on Global Telecommunications, GLOBECOM, 27 Nov.-1 Dec. 2000, San Francisco, CA, USA. IEEE, 2000. doi:http://dx.doi.org/10.1109/GLOCOM.2000.891255.

GALLAGER, R. Low-density parity-check codes. IEEE Trans. Inf. Theory, v.8, n.1, p.21-28, 1962.

GALLAGER, R. Low-Density Parity-Check Codes. M.I.T. Press, Cambridge, MA, 1963.

MACKAY, D.J.C.; WILSON, S.T.; DAVEY, M.C. Comparison of constructions of irregular Gallager codes. IEEE Trans. Commun., v.47, n.10, p.1449-1454, 1999. doi:http://dx.doi.org/10.1109/26.795809.

MACKAY, D.J.C. Good error-correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory, v.45, n.2, p.399-431, 1999. doi:http://dx.doi.org/10.1109/18.748992.

BERROU, C.; GLAVIEUX, A.; THITIMAJSHIMA, P. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1. Proc. of IEEE Int. Conf. on Communications, ICC-93, 23-26 May 1993, Geneva, Switzerland. IEEE, 1993, p.1064-1070. doi:http://dx.doi.org/10.1109/ICC.1993.397441.

BERROU, C.; GLAVIEUX, A. Near optimum error correcting coding and decoding: turbo-codes. IEEE Trans. Commun., v.44, n.10, p.1261-1271, 1996. doi:http://dx.doi.org/10.1109/26.539767.

MANDELBAUM, D. An adaptive-feedback coding scheme using incremental redundancy. IEEE Trans. Inf. Theory, v.20, n.3, p.388-389, 1974. doi:http://dx.doi.org/10.1109/TIT.1974.1055215.

LIN, SHU; COSTELLO, DANIEL J.; MILLER, MICHAEL J. Automatic-repeat-request error-control schemes. IEEE Commun. Magazine, v.22, n.12, p.5-17, 1984. doi:http://dx.doi.org/10.1109/MCOM.1984.1091865.

CHASE, D. Code combining—a maximum-likelihood decoding approach for combining an arbitrary number of noisy packets. IEEE Trans. Commun., v.33, n.5, p.385-393, 1985. doi:http://dx.doi.org/10.1109/TCOM.1985.1096314.

ERGEN, MUSTAFA. Mobile Broadband. Including WiMax and LTE. Springer, 2009. doi:http://dx.doi.org/10.1007/978-0-387-68192-4.

BREDDERMANN, T.; ESCHBACH, B.; VARY, P. Hybrid ARQ scheme for UMTS LTE based on insertion convolutional turbo codes. Proc. of 2012 IEEE 23rd Int. Symp. on Personal, Indoor and Mobile Radio Communications, PIMRC, 9-12 Sept. 2012, Sydney, Australia. IEEE, 2012, p.1919-1924. doi:http://dx.doi.org/10.1109/PIMRC.2012.6362666.

CHEN, H.; MAUNDER, R.G.; HANZO, L. A survey and tutorial on low-complexity turbo coding techniques and a holistic hybrid ARQ design example. IEEE Commun. Surveys Tutorials, v.15, n.4, p.1546-1566, 2013. doi:http://dx.doi.org/10.1109/SURV.2013.013013.00079.

DAHLMAN, E.; PARKVALL, S.; SKOLD, J. 4G: LTE/LTE-Advanced for Mobile Broadband. Oxford: Academic Press, 2011.

ZAITSEV, S.V.; KAZYMYR, V.V. Method for adaptive decoding in case of information transmission in condition of influence of deliberate noise. Radioelectron. Commun. Syst., v.58, n.5, p.212-219, 2015. doi:http://dx.doi.org/10.3103/S0735272715050039.

Published

2017-01-15

Issue

Section

Research Articles