DOI: https://doi.org/10.3103/S0735272716050010
Open Access Open Access  Restricted Access Subscription Access
Main processes of dark current

QWIP focal plane array theoretical model of 3-D imaging LADAR system

Mohamed Bakry El Mashade, Ahmed Elsayed AbouElez

Abstract


The aim of this research is to develop a model for the direct detection three-dimensional (3-D) imaging LADAR system using Quantum Well Infrared Photodetector (QWIP) Focal Plane Array (FPA). This model is employed to study how to add 3-D imaging capability to the existing conventional thermal imaging systems of the same basic form which is sensitive to 3–5 mm (mid-wavelength infrared, MWIR) or 8–12 mm (long-wavelength infrared, LWIR) spectral bands. The integrated signal photoelectrons in case of short integration time is required to transmit laser pulses with higher energy in order to obtain photoelectrons nearest those values obtained from the background photoelectrons in thermal imaging system with the longer interval of time. Since the operating conditions of the proposed system are of low levels for speckle diversity and high levels of signal photoelectrons, it was shown that the signal obeys the Gaussian probability density function. The evaluation of system performance of the proposed model shows that it needs a detector with low dark current and high transmitted energy to obtain satisfactory parameter values.

Keywords


quantum well infrared photodetector; three-dimensional imaging; direct detection; ladar

Full Text:

PDF

References


GUNAPALA, S.D.; BANDARA, S.V.; LIU, J.K.; MUMOLO, J.M.; HILL, C.J.; RAFOL, S.B.; SALAZAR, D.; WOOLAWAY, J.; LEVAN, P.D.; TIDROW, M.Z. Towards dualband megapixel QWIP focal plane arrays. Infrared Physics & Technology, 2007, v.50, n.2-3, p.217-226, DOI: http://dx.doi.org/10.1016/j.infrared.2006.10.005.

GOLDBERG, ARNOLD C.; FISCHER, THEODORE; KENNERLY, STEPHEN W.; WANG, SAMUEL C.H.; SUNDARAM, MANI; UPPAL, PARVEZ N.; WINN, MICHAEL L.; MILNE, GREGORY L.; STEVENS, MARK A. Dual-band QWIP MWIR/LWIR focal plane array test results. Proc. SPIE, 2000, v.4028, p.276-287, DOI: http://dx.doi.org/10.1117/12.391740.

LU, WEI; LING, LI; ZHENG, HONGLOU; XU, WENLAN; XIONG, DAYUAN. Development of an infrared detector: Quantum well infrared photodetector. Science in China Series G: Physics, Mechanics and Astronomy, Jul. 2009, v.52, n.7, p.969-977, DOI: http://dx.doi.org/10.1007/s11433-009-0131-0.

LIU, H.C.; DUDEK, R.; SHEN, A.; DUPONT, E.; SONG, C.Y.; WASILEWSKI, Z.R.; BUCHANAN, M. High absorption (>90%) quantum-well infrared photodetectors. Appl. Phys. Lett., 2001, v.79, n.25, p.4237-4239, DOI: http://dx.doi.org/10.1063/1.1425066.

ALBOTA, MARIUS A.; HEINRICHS, RICHARD M.; KOCHER, DAVID G.; FOUCHE, DANIEL G.; PLAYER, BRIAN E.; O’BRIEN, MICHAEL E.; AULL, BRIAN F.; ZAYHOWSKI, JOHN J.; MOONEY, JAMES; WILLARD, BERTON C.; CARLSON, ROBERT R. Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser. Appl. Optics, 2002, v.41, n.36, p.7671-7678, DOI: http://dx.doi.org/10.1364/AO.41.007671.

BECK, JEFF; WOODALL, MILTON; SCRITCHFIELD, RICHARD; OHLSON, MARTHA; WOOD, LEWIS; MITRA, PRADIP; ROBINSON, JIM. Gated IR imaging with 128x128 HgCdTe electron avalanche photodiode FPA. Proc. SPIE, 2007, v.6542, p.654217, DOI: http://dx.doi.org/10.1117/12.719358.

PATEL, C. KUMAR N. From CO2 lasers to quantum cascade lasers—A saga of high power infrared lasers. J. Laser Appl., 2009, v.21, n.4, p.224-238, DOI: http://dx.doi.org/10.2351/1.3263623.

RAZEGHI, MANIJEH; SLIVKEN, STEVEN; BAI, YANBO; GOKDEN, BURC; DARVISH, SHABAN RAMEZANI. High power quantum cascade lasers. New J. Phys., 2009, v.11, n.12, p.125017, DOI: http://dx.doi.org/10.1088/1367-2630/11/12/125017.

MAULINI, RICHARD; LYAKH, ARKADIY; TSEKOUN, ALEXEI; GO, ROWEL; PFLÜGL, CHRISTIAN; DIEHL, LAURENT; CAPASSO, FEDERICO; PATEL, C. KUMAR N. High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings. Appl. Phys. Lett., 2009, v.95, n.15, p.151112, DOI: http://dx.doi.org/10.1063/1.3246799.

YU, JAE SU; SLIVKEN, STEVEN; EVANS, ALLAN J.; RAZEGHI, MANIJEH. High-performance continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature. IEEE J. Quantum Electron., Aug. 2008, v.44, n.8, p.747-754, DOI: http://dx.doi.org/10.1109/JQE.2008.924434.

LEE, BENJAMIN G.; ZHANG, HAIFEI A.; PFLÜGL, CHRISTIAN; DIEHL, LAURENT; BELKIN, MIKHAIL A.; FISCHER, MILAN; WITTMANN, ANDREAS; FAIST, JEROME; CAPASSO, FEDERICO. Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm. IEEE Photonics Technol. Lett., Jul. 2009, v.21, n.13, p.914-916, DOI: http://dx.doi.org/10.1109/LPT.2009.2020440.

SHADRIN, V.D.; MITIN, V.V.; KOCHELAPB, V.A.; K.-CHOI, K. Photoconductive gain and generation-recombination noise in quantum well infrared photodetectors. J. Appl. Phys., 1995, v.77, n.4, p.1771-1775, DOI: http://dx.doi.org/10.1063/1.358873.

SNAPI, N.; PALTIEL, Y.; ZUSSMAN, A.; JUNG, G.; SIMON, A. BEN. Non-Gaussian noise in quantum wells infrared photodetectors. Infrared Physics & Technology, Apr. 2007, v.50, n.2-3, p.100-105, DOI: http://dx.doi.org/10.1016/j.infrared.2006.10.012.

ETTEH, N.E.I.; HARRISON, PAUL. Carrier scattering approach to the origins of dark current in mid and far-infrared (terahertz) quantum-well intersubband photodetectors (QWIPs). IEEE J. Quantum Electron., May 2001, v.37, n.5, p.672-675, DOI: http://dx.doi.org/10.1109/3.918580.

ETTEH, N.E.I.; HARRISON, P. Quantum mechanical scattering investigation of the thermionic and field induced emission components of the dark current in quantum well infrared photodetectors. J. Appl. Phys., 2002, v.92, n.1, p.248-252, DOI: http://dx.doi.org/10.1063/1.1481214.

NEJAD, SHAHRAM MOHAMMAD; POURMAHYABADI, M.; AMIDIAN, A. Optimal dark current reduction in quantum well 9 μm GaAs/AlGaAs infrared photodetectors with improved detectivity. Proc. of 13th IEEE Int. Conf. on Electronics, Circuits and Systems, ICECS, 10-13 Dec. 2006, Nice. IEEE, 2006, p.918-921, DOI: http://dx.doi.org/10.1109/ICECS.2006.379939.

MECHERLE, G. STEPHEN. Signal speckle effects on optical detection with additive Gaussian noise. JOSA A, 1984, v.1, n.1, p.68-72, DOI: http://dx.doi.org/10.1364/JOSAA.1.000068.

YOUMANS, DOUGLAS G. Avalanche photodiode detection statistics for direct detection laser radar. Proc. SPIE, 1992, v.1633, p.41-53, DOI: http://dx.doi.org/10.1117/12.59115.

YURA, H.T. LADAR detection statistics in the presence of pointing errors. Appl. Optics, 1994, v.33, n.27, p.6482-6498, DOI: http://dx.doi.org/10.1364/AO.33.006482.

HENRIKSSON, MARKUS. Detection probabilities for photon-counting avalanche photodiodes applied to a laser radar system. Appl. Optics, 2005, v.44, n.24, p.5140-5147, DOI: http://dx.doi.org/10.1364/AO.44.005140.

GOODMAN, J.W. Statistical Optics. New York: Wiley, 1985.

OSCHE, GREGORY R. Optical Detection Theory for Laser Applications. New Jersy: Wiley, 2002.

JEFFREY, ALAN. ZWILLINGER, DANIEL. Table of Integrals, Series, and Products, 7th ed. Academic Press, 2007.

KRISHNA, SANJAY; KWON, OH-HYUN; HAYAT, MAJEED M. Theoretical investigation of quantum-dot avalanche photodiodes for mid-infrared applications. IEEE J. Quantum Electron., Dec. 2005, v.41, n.12, p.1468-1473, DOI: http://dx.doi.org/10.1109/JQE.2005.858791.







© Radioelectronics and Communications Systems, 2004–2020
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41