Q-Factor of tuned microstrip resonator

Authors

DOI:

https://doi.org/10.3103/S0735272716020060

Keywords:

microstrip transmission line, micro-mechanical tuning, effective permittivity, resonator, electromagnetic energy, loss, quality factor

Abstract

The paper presents research of quality factor in the micro-mechanically tunable microstrip resonator and its change in response to tuning. In the presented design unloaded quality factor increases about 10% during tuning due to reduction of dielectric loss in substrate’s medium and ohmic loss in metal electrodes. When total loss in the device is relatively small, loss mechanisms contribute additively, so complex effective permittivity can be used to account loss reduction and frequency tuning.

References

NI, JIA; HONG, JIASHENG. Compact varactor-tuned microstrip high-pass filter with a quasi-elliptic function response. IEEE Trans. Microwave Theory Tech., Nov. 2013, v.61, n.11, p.3853-3859, DOI: http://dx.doi.org/10.1109/TMTT.2013.2281964.

XU, HE; WANG, XINHUAI; WANG, YANYI; CHENG, WEI; SHI, XIAOWEI. A varactor-tuned dual-passband microstrip filter using stepped impedance resonators. Proc. of Int. Conf. on Microwave and Millimeter Wave Technology, ICMMT, 5-8 May 2012, Shenzhen. IEEE, 2012, v.2, p.1-4, DOI: http://dx.doi.org/10.1109/ICMMT.2012.6230032.

CHAKRABARTY, K.; BUDIMIR, D. Compact tunable bandstop filters using Defected Microstrip Structure for multi-standard wireless systems. Proc. of European Microwave Conf., EuMC, 6-10 Oct. 2013, Nuremberg. IEEE, 2013, p.1031-1034, http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6686836.

POTHIER, A.; ORLIANGES, J.-C.; ZHENG, GUIZHEN; CHAMPEAUX, CORINNE; CATHERINOT, A.; CROS, D.; BLONDY, P.; PAPAPOLYMEROU, J. Low-loss 2-bit tunable bandpass filters using MEMS DC contact switches. IEEE Trans. Microwave Theory Tech., Jan. 2005, v.53, n.1, p.354-360, DOI: http://dx.doi.org/10.1109/TMTT.2004.839935.

MALCZEWSKI, A.; PILLANS, B.W.; MORRIS, F.J.; NEWSTROM, R.A. A family of MEMS tunable filters for advanced RF applications. IEEE MTT-S Int. Microwave Symp. Dig., 5-10 Jun. 2011, Baltimore, MD. IEEE, 2011, p.1-4, DOI: http://dx.doi.org/10.1109/MWSYM.2011.5972889.

POPLAVKO, Y.M.; MOLCHANOV, V.I.; PASHKOV, V.M.; PROKOPENKO, Y.V.; KAZMIRENKO, V.A.; GOLUBEVA, I.P.; PRATSIUK, B.B. Tunable microwave devices with electromechanical control. Tekhnika i Pribory SVCh, 2009, n.1, p.49-59.

SERGIENKO, P.; GOLUBEVA, I.; PROKOPENKO, Y. Loss in tunable microstrip lines. Proc. of IEEE 34th Int. Conf. on Electronics and Nanotechnology, ELNANO, 15-18 Apr. 2014, Kyiv, Ukraine. IEEE, 2014, p.97-100, DOI: http://dx.doi.org/10.1109/ELNANO.2014.6873972.

SERGIENKO, P.Y.; PROKOPENKO, Y.V.; POPLAVKO, Y.M.; VANDENBOSCH, G. Tunable band-stop and band-pass filters based on microstrip stub resonators. Proc. of 23rd Int. Crimean Conf. on Microwave and Telecommunication Technology, CriMiCo, 8-14 Sept. 2013, Sevastopol, Ukraine. IEEE, 2013, p.649-651, http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6652996.

SERGIENKO, P.; PROKOPENKO, Y.; VANDENBOSCH, G.A.E. Novel concept for microstrip stub resonant frequency control. Proc. of IEEE 33th Int. Conf. on Electronics and Nanotechnology, ELNANO, 16-19 Apr. 2013, Kyiv, Ukraine. IEEE, 2013, p.94-98, DOI: http://dx.doi.org/10.1109/ELNANO.2013.6552072.

POPLAVKO, Y.; SCHMIGIN, D.; PASHKOV, V.; JEONG, M.; BAIK, S. Tunable microstrip filter with piezo-moved ground electrode. Proc. of European Microwave Conf., EUMC, 4-6 Oct. 2005. IEEE, 2005, v.2, DOI: http://dx.doi.org/10.1109/EUMC.2005.1610171.

BURDIN, F.; PISTONO, E.; FERRARI, P. Tunable compact filters based on stub-loaded parallelcoupled resonators. Proc. of Mediterranean Microwave Symp., MMS, 25-27 Aug. 2010, Guzelyurt. IEEE, 2010, p.110-113, DOI: http://dx.doi.org/10.1109/MMW.2010.5605146.

Published

2016-02-20

Issue

Section

Research Articles