DOI: https://doi.org/10.3103/S0735272716020023
Open Access Open Access  Restricted Access Subscription Access
Efficient coefficient of electromechanic coupling

Active elements on a basis of ZnO nanorods for energy harvesting devices

Anatolii T. Orlov, Veronika A. Ulianova, Andrii I. Zazerin, O. V. Bogdan, G. A. Pashkevich, Yuriy I. Yakymenko

Abstract


It is represented the research of piezoelectric properties of nanorods and their application in energy harvesting devices. According to the simulation results with method of finite elements the value of electromechanic coupling coefficient of monolayer from ZnO nanorods is greater than one in compare to uniform film application. The sample manufacturing method consists of application of traditional microelectronic technique for shaping of top and bottom electrodes and also application of two-steps low-temperature chemical synthesis for ZnO nanorods. To provide acoustic perturbation of the sample the piezoceramic element is used in multilayer structure fixed on the glassceramic substrate. The results are obtained for two measurement modes, providing oscillations perturbation by rectangular pulses source and by harmonic generator. Obtained results demonstrate high efficiency of piezoelectric transformation for monolayer, which consists of ZnO nanorods that is possible to be used in different self-powered devices.

Keywords


energy harvesting devices; ZnO nanorods; efficient factor of electromechanic coupling; hydrothermal synthesis; multilayered structure

Full Text:

PDF

References


WANG, X. Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale. Nano Energy, Jan. 2012, v.1, n.1, p.13-24, DOI: http://dx.doi.org/10.1016/j.nanoen.2011.09.001.

SUN, C.; SHI, J.; WANG, X. Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J. Appl. Phys., 2010, v.108, n.3, p.034309, DOI: http://dx.doi.org/10.1063/1.3462468.

ASTHANA, A.; MOMENI, K.; PRASAD, A.; YAP, Y.K.; YASSAR, R.S. In situ observation of size-scale effects on the mechanical properties of ZnO nanowires. Nanotechnology, 2011, v.22, n.26, p.265712, DOI: http://dx.doi.org/10.1088/0957-4484/22/26/265712.

XU, SHENG; QIN, YONG; XU, CHEN; WEI, YAGUANG; YANG, RUSEN; WANG, ZHONG LIN. Self-powered nanowire devices. Nature Nanotechnology, 2010, v.5, n.5, p.366-373, DOI: http://dx.doi.org/10.1038/nnano.2010.46.

GAO, Y.; WANG, Z.L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett., 2007, v.7, n.8, p.2499-2505, DOI: http://dx.doi.org/10.1021/nl071310j.

AGRAWAL, RAVI; ESPINOSA, HORACIO D. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett., 2011, v.11, n.2, p.786-790, DOI: http://dx.doi.org/10.1021/nl104004d.

LESIEUTRE, G.A.; DAVIS, C.L. Can a coupling coefficient of a piezoelectric device be higher than those of its active material? J. Intelligent Material Systems Structures, 1997, v.8, n.10, p.859-867, DOI: http://dx.doi.org/10.1177/1045389X9700801005.

IVIRA, B.; BENECH, P.; FILLIT, R.; NDAGIJIMANA, F.; ANCEY, P.; PARAT, G. Modeling for temperature compensation and temperature characterizations of BAW resonators at GHz frequencies. IEEE Trans. Ultrason., Ferroelectrics, and Frequency Control, Feb. 2008, v.55, n.2, p.421-430, DOI: http://dx.doi.org/10.1109/TUFFC.2008.660.

ORLOV, A.; ULIANOVA, V.; YAKIMENKO, Y.; BOGDAN, O.; PASHKEVICH, G. Influence of process temperature on ZnO nanostructures formation. Proc. of IEEE 34th Int. Conf. on Electronics and Nanotechnology, ELNANO, 15-18 Apr. 2014, Kyiv, Ukraine. IEEE, 2014, p.51-53, DOI: http://dx.doi.org/10.1109/ELNANO.2014.6873960.

ULIANOVA, V.; ZAZERIN, A.; PASHKEVICH, G.; BOGDAN, O.; ORLOV, A. High-performance ultraviolet radiation sensors based on zinc oxide nanorods. Sensors and Actuators A: Physical, 2015, v.234, p.113-119, DOI: http://dx.doi.org/10.1016/j.sna.2015.08.012.

ORLOV, A.; ULIANOVA, V.; ZAZERIN, A.; BOGDAN, O.; PASHKEVICH, G.; YAKIMENKO, Y. ZnO nanorods in energy harvesting devices. Proc. of IEEE 35th Int. Conf. on Electronics and Nanotechnology, ELNANO, 21-24 Apr. 2015, Kyiv, Ukraine. IEEE, 2015, p.168-170, DOI: http://dx.doi.org/10.1109/ELNANO.2015.7146863.

GAVRILOV, S.A.; GROMOV, D.G.; KOZ’MIN, A.M.; NAZARKIN, M.Y.; TIMOSHENKOV, S.P. SHULYAT’EV, A.S.; KOCHURINA, E.S. Piezoelectric energy nanoharvester based on an array of ZnO whisker nanocrystals and a flat copper electrode. Phys. Solid State, 2013, v.55, n.7, p.1476-1479, DOI: http://dx.doi.org/10.1134/S1063783413070135.







© Radioelectronics and Communications Systems, 2004–2020
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41