DOI: https://doi.org/10.3103/S0735272715100015
Open Access Open Access  Restricted Access Subscription Access
Non-linear EEHEMT model

Methodology of built and verification of non-linear EEHEMT model for GaN HEMT transistor

A. A. Kokolov, L. I. Babak

Abstract


It is considered a formalized methodology allowing to realize the extraction of the parameters of non-linear EEHEMT model for ultra-high frequency FET on a basis of measured low-signal S-parameters and voltage-current characteristics. We built a model of domestic 0.15 µm GaN HEMT transistor, operating in millimeter wavelength range as an example. Correctness and accuracy of the non-linear model obtained were verified by means of measurement of the output power and load characteristics of the transistor in large-signal operation.

Keywords


microwave transistor; non-linear model; extraction; measurements; load characteristics; GaN HEMT

Full Text:

PDF

References


CURTICE, W.R.; ETTENBERG, M. A nonlinear GaAs FET model for use in the design of output circuits for power amplifier. IEEE Trans. Microwave Theory Tech., Dec. 1985, v.33, n.12, p.1383-1394, DOI: http://dx.doi.org/10.1109/TMTT.1985.1133229.

ANGELOV, I.; ZIRATH, H.; ROSMAN, N. A new empirical nonlinear model for HEMT and MESFET devices. IEEE Trans. Microwave Theory Tech., Dec. 1992, v.40, n.12, p.2258-2266, DOI: http://dx.doi.org/10.1109/22.179888.

MATERKA, A.; KACPRZAK, T. Computer calculation of large-signal GaAs FET amplifier characteristics. IEEE Trans. Microwave Theory Tech., Feb. 1985, v.33, n.2, p.129-135, DOI: http://dx.doi.org/10.1109/TMTT.1985.1132960.

ROOT, D.E.; FAN, S.; MEYER, JEFF. Technology independent large signal non quasi-static FET models by direct construction from automatically characterized device data. Proc. of 21st Eur. Microwave Conf., 9-12 Sept. 1991, Stuttgart, Germany. IEEE, 1991, p.927-932, DOI: http://dx.doi.org/10.1109/EUMA.1991.336465.

CHALERMWISUTKUL, SURAMAT. Large signal modeling of GaN HEMTs for UMTS base station power amplifier design taking into account memory effects. Dissert. … Doctor of Philosophy Electrical Engineering. Germany: Aachen University, 2007, 151 p.

ESKANADRI, S.; HAMEDANI, F.T. Extracting the parameters of an EEHEMT nonlinear model for InP HEMT operating at G-band frequency. Proc. of 19th Int. Conf. on Mixed Design of Integrated Circuits and Systems, MIXDES, 24-26 May 2012, Warsaw. IEEE, 2012, p.360-363, http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6226221&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6226221.

DHAR, J.; GARG, S.K.; ARORA, R.K.; RANA, S.S. Nonlinear design of a C band power amplifier using EEHEMT nonlinear model. Proc. of Int. Symp. on Signals, Circuits and Systems, ISSCS 2007, 13-14 July 2007, Iasi. IEEE, 2007, p.1-4, DOI: http://dx.doi.org/10.1109/ISSCS.2007.4292658.

HAJJI, R.; POULTON, M.; CRITTENDEN, D.B.; GENGLER, J.; XIA, P. GaN-HEMT nonlinear modeling of single-ended and Doherty high-power amplifiers. Proc. of 44th European Conf. on Microwave Integrated Circuits, EuMC, 6-9 Oct. 2014, Rome, Italy. IEEE, 2014, p.1317-1320, DOI: http://dx.doi.org/10.1109/EuMC.2014.6986686.

COLANTONIO, PAOLO; GIANNINI, FRANCO; LIMITI, ERNESTO. High Efficiency RF and Microwave Solid State Power Amplifiers. John Wiley & Sons Ltd, 2009, 511 p., DOI: http://dx.doi.org/10.1002/9780470746547.

TAYRANI, R. A spectrally pure 5.0 W, high PAE (6-12 GHz) GaN monolithic class E power amplifier for advanced T/R modules. Proc. of IEEE Symp. on Radio Frequency Integrated Circuits, RFIC, 3-5 June 2007, Honolulu, HI. IEEE, 2007, p.581-584, DOI: http://dx.doi.org/10.1109/RFIC.2007.380951.

MAAS, A.P.M.; HOOGLAND, J.A. 60 GHz GaAs MMIC mixers with integrated LO buffer. Proc. of Eur. Symp. on Gallium Arsenide and Other Semiconductor Application, EGAAS, 3-4 Oct. 2005, Paris, France. IEEE, 2005, p.465-468, http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1637256&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1637256.

DAMBRINE, G.; CAPPY, ALAIN; HELIODORE, F.; PLAYEZ, E. A new method for determining the FET small-signal equivalent circuit. IEEE Trans. Microwave Theory Tech., Jul. 1988, v.36, n.7, p.1151-1159, DOI: http://dx.doi.org/10.1109/22.3650.

KOKOLOV, A.A.; BABAK, L.I. A technique for extraction of HEMT small signal model. Doklady TUSUR, 2010, v.22, n.2, p.153-156, http://www.tusur.ru/filearchive/reports-magazine/2010-2-1/153.pdf.

BERROTH, M.; BOSCH, R. High-frequency equivalent circuit of GaAs FETs for large-signal applications. IEEE Trans. Microwave Theory Tech., Feb. 1991, v.39, n.2, p.224-229, DOI: http://dx.doi.org/10.1109/22.102964.

AAEN, PETER; PLA, JAIME A.; WOOD, JOHN. Modeling and Characterization of RF and Microwave Power FETs. Cambridge University Press, 2007, 380 p.

RORSMAN, N.; GARCIA, M.; KARLSSON, C.; ZIRATH, H. Accurate small-signal modeling of HFET’s for millimeter-wave applications. IEEE Trans. Microwave Theory Tech., Mar. 1996, v.44, n.3, p.432-437, DOI: http://dx.doi.org/10.1109/22.486152.

CUSACK, J.M.; PERLOW, S.M.; PERLMAN, B.S. Automatic load contour mapping for microwave power transistors. S-MTT Int. Microwave Symp. Dig., 12-14 Jun. 1974, Atlanta, Georgia, USA. IEEE, 1974, p.269-271, DOI: http://dx.doi.org/10.1109/MWSYM.1974.1123569.







© Radioelectronics and Communications Systems, 2004–2019
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41