DOI: https://doi.org/10.3103/S0735272715090034
Open Access Open Access  Restricted Access Subscription Access
Distributions of the squares of amplitudes for the harmonics across the length of a crystal

Frequency multiplication of terahertz radiation in the crystals of strontium titanate paraelectric

Alvaro Zamudio-Lara, Svetlana V. Koshevaya, Volodymyr V. Grimalsky, Fabiola Yañez-Cortes

Abstract


In this article we have investigated frequency multiplication in the crystals of strontium titanate paraelectric at a temperature of 77 K. Frequency dispersion affects the process of harmonics generation. It has been shown that the efficiency of higher harmonics generation is high and it is equal to 30%. One can perform the selective extraction of certain harmonic by means of an optimal choice of the crystal length.

Keywords


THz; THz radiation; frequency multiplication; paraelectric

Full Text:

PDF

References


LEE, YUN-SHIK. Principles of Terahertz Science and Technology. N.Y.: Springer, 2009, 340 p., DOI: http://dx.doi.org/10.1007/978-0-387-09540-0.

PERENZONI, MATTEO; PAUL, DOUGLAS J. (eds.), Physics and Applications of Terahertz Radiation. N.Y.: Springer, 2014, 255 p., DOI: http://dx.doi.org/10.1007/978-94-007-3837-9.

SIEGEL, P.H. Terahertz Pioneer: Erik L. Kollberg ‘Instrument Maker to the Stars’. IEEE Trans. Terahertz Sci. Technol., Sept. 2014, v.4, n.5, p.538-544, DOI: http://dx.doi.org/10.1109/TTHZ.2014.2344191.

WARD, J.S.; CHATTOPADHYAY, G.; GILL, J.; JAVADI, H.; LEE, CHOONSUP; LIN, R.; MAESTRINI, A.; MAIWALD, F.; MEHDI, I.; SCHLECHT, E.; SIEGEL, P. Tunable broadband frequency-multiplied terahertz sources. Proc. of 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves, IRMMW-THz, 15-19 Sept. 2008, Pasadena, CA. IEEE, 2008, p.1-3, DOI: http://dx.doi.org/10.1109/ICIMW.2008.4665437.

LEBEDEV, A.I. Physics of Semiconductor Devices. Moscow: Fizmatlit, 2008 [in Russian].

Ferroelectrics in Microwave Engineering. Moscow: Sov. Radio, 1979 [in Russian, ed. by O. G. Vendik].

REZ, I.S.; POPLAVKO, Y.M. Dielectrics. Fundamental Properties and Application in Electronics. Moscow: Radio i Svyaz’, 1989 [in Russian].

POPLAVKO, Y.M.; PEREVERZEVA, L.P.; VORONOV, S.O.; YAKYMENKO, Y.I. Material Physics. Part 2. Dielectrics. Kyiv: NTUU KPI, 2007 [in Ukrainian].

GEVORGIAN, SPARTAK. Ferroelectrics in Microwave Devices, Circuits and Systems. N.Y.: Springer, 2009, 394 p., DOI: http://dx.doi.org/10.1007/978-1-84882-507-9.

IVANOV, I.V.; BUZIN, I.M.; BELOKOPYTOV, G.V.; SYCHEV, V.M.; CHUPRAKOV, V.F. Low temperature ferroelectrics: Dielectric nonlinearity, losses, and parametric interactions at ultrahigh frequencies. Soviet Physics Journal, 1981, v.24, n.8, p.684-704, DOI: http://dx.doi.org/10.1007/BF00941340.

GASSANOV, L.G.; KOSHEVAYA, S.V.; NARYTNIK, T.N.; OMELIANENKO, M.Y. Parametric and nonlinear interaction of electromagnetic waves in paraelectrics. Izv. Vyssh. Uchebn. Zaved., Radioelektron., 1978, v.21, n.10, p.56-63 [Radioelectron. Commun. Syst., 1978, v.21, n.10, p.52-59].

KOSHEVAYA, S.V.; GASSANOV, L.G.; OMELIANENKO, M.Y. Generation of the third harmonic in dispersion-free nonlinear dielectric. Ukr. J. Phys., 1980, v.25, n.7, p.1118-1123.

KOSHEVAYA, S.V.; KONONOV, M.V.; OMELIANENKO, M.Y. The influence of dispersion in waveguide systems with cubic nonlinear dielectrics. Izv. Vyssh. Uchebn. Zaved., Radioelektron., 1985, v.28, n.3, p.53-56 [Radioelectron. Commun. Syst., 1985, v.28, n.3, p.48-50].

KONONOV, M.V.; KOSHEVAYA, S.V.; OMELIANENKO, M.Y. Nonlinear microwaves in crystals. Sb. Kvantovaya Elektronika. Inst. Poluprovodnikov AN USSR, 1984, n.26, p.55-68.

GASSANOV, L.G.; KOSHEVAYA, S.V.; OMELIANENKO, M.Y. Frequency multiplication in paraelectrics. Radiotekh. Electron., 1980, v.25, n.6, p.1238-1243.

VUGMEYSTER, I.D. Development of a terahertz time-domain spectrometer optimized at 5-8 THz and the study of surface polaritons in NiO–SrTiO3 nano-composite ceramics. PhD Dissertation. The University of Michigan, 2013, 121 p.

KAMARAS, K.; BARTH, K.-L.; KEILMANN, F.; HENN, R.; REEDYK, M.; THOMSEN, C.; CARDONA, M.; KIRCHER, J.; RICHARDS, P.L.; STEHLE, J.-L. The low-temperature infrared optical functions of SrTiO3 determined by reflectance spectroscopy and spectroscopic ellipsometry. J. Appl. Phys., 1995, v.78, n.3, p.1235-1240, DOI: http://dx.doi.org/10.1063/1.360364.

YASHCHYSHYN, Y.; GODZISZEWSKI, K.; BAJURKO, P.; MODELSKI, J.; SZAFRAN, M.; BOBRYK, E.; PAWLIKOWSKA, E.; TARAPATA, G.; WEREMCZUK, J.; JACHOWICZ, R. Tunable ferroelectric ceramic-polymer composites for sub-THz applications. Proc. of 43rd European Microwave Conf., EuMC, 6-10 Oct. 2013, Nuremberg, Germany. IEEE, 2013, p.676-679, INSPEC: 13999560.

BLOEMBERGEN, N. Nonlinear Optics. World Scientific, 1996.

BORN, M.; WOLF, E. Principles of Optics. Cambridge University Press, 1999.

KOSHEVAYA, S.V.; OMELIANENKO, M.Y. Wideband matching of waveguides containing materials with high ε. Izv. Vyssh. Uchebn. Zaved., Radioelektron., 1984, v.27, n.12, p.70-72 [Radioelectron. Commun. Syst., 1984, v.27, n.12, p.65-68].







© Radioelectronics and Communications Systems, 2004–2020
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41