Open Access Open Access  Restricted Access Subscription Access
Asymmetrical quantum-mechanical barrier and well

Input impedance characteristics of barrier structures

M. A. Gindikina, M. V. Vodolazka, Evgeniy A. Nelin


In this article we consider the general peculiarities of input impedance characteristics. The analytical expressions for the input impedance characteristics have been obtained for the typical wave barrier structures. We present the dependences of the input impedance on the energy for the quantum-mechanical structures and on the frequency for the case of electromagnetic and acoustic structures. Additional conditions to the known ones of resonance transmission and of resonance wave localization, which occur in barrier structures, have been found.


input impedance; double-barrier structure; double-well structure

Full Text:



MARKOS, P.; SOUKOULIS, C.M. Wave Propagation from Electrons to Photonic Crystals and Left-Handed Materials. Princeton and Oxford: Princeton University Press, 2008, 352 p.

CRAWFORD, F. Waves. Moscow: Nauka, 1974 [in Russian].

NGUYEN, H.S.; VISHNEVSKY, D.; STURM, C.; TANESE, D.; SOLNYSHKOV, D.; GALOPIN, E.; LEMAITRE, A.; SAGNES, I.; AMO, A.; MALPUECH, G.; BLOCH, J. Realization of a double-barrier resonant tunneling diode for cavity polaritons. Phys. Rev. Lett., 2013, v.110, p.236601, DOI:

SEO, K.C.; IHM, G.; AHN, K.-H.; LEE, S.J. Spin filtering in an electromagnetic structure. J. Appl. Phys., 2004, v.95, n.11, p.7252-7254, DOI:

HAYASHI, S.; KUROKAWA, H.; OGA, H. Observation of resonant photon tunneling in photonic double barrier structures. Opt. Rev., 1999, v.6, n.3, p.204-210, DOI:

QIU, C.; LIU, Z.; MEI, J.; SHI, J. Mode-selecting acoustic filter by using resonant tunneling of two-dimensional double phononic crystals. Appl. Phys. Lett., 2005, v.87, n.10, p.104101-104103, DOI:

GORODETSKIY, M.L. Fundamentals of Optical Microresonators Theory. Moscow: Moscow State University, 2010 [in Russian].

BASDEVANT, J.-L. Lectures on Quantum Mechanics. N.Y.: Springer, 2007, 308 p.

JELIC, V.; MARSIGLIO, F. The double-well potential in quantum mechanics: a simple, numerically exact formulation. Eur. J. Phys., 2012, v.33, n.6, p.1651-1666, DOI:

FEYNMAN, R.; LEIGHTON, R.; SANDS, M. The Feynman Lectures on Physics, 3 vol. 1964, 1966.

KHONDKER, A.N.; KHAN, M. REZWAN; ANWAR, A.F.M. Transmission line analogy of resonance tunneling phenomena: The generalized impedance concept. J. Appl. Phys., 1988, v.63, n.10, p.5191-5193, DOI:

NELIN, E.A. Impedance model for quantum-mechanical barrier problems. Phys. Usp., 2007, v.50, n.3, p.293-299, DOI:

NELIN, E.A. Impedance conditions of resonance propagation and resonance localization of waves in barrier structures. Tech. Phys., 2011, v.56, n.1, p.132-134, DOI:

ZERNOV, N.V.; KARPOV, V.G. Theory of Radioengineering Circuits. Leningrad: Energiya, 1972 [in Russian].

LANDAU, L.D.; LIFSHITZ, E.M. Quantum Mechanics: Non-Relativistic Theory. Moscow: Phizmatlit, 2002 [in Russian].

VODOLAZKA, M.V.; NELIN, E.A. Model of impedance delta-inhomogeneities for micro- and nanostructures. Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2014, v.57, n.5, p.25-34, [Radioelectron. Commun. Syst., 2014, v.57, n.5, p.208-216, DOI:].

© Radioelectronics and Communications Systems, 2004–2020
When you copy an active link to the material is required
ISSN 1934-8061 (Online), ISSN 0735-2727 (Print)
tel./fax +38044 204-82-31, 204-90-41