Adaptive variant of the surrogate data technology for enhancing the effectiveness of signal spectral analysis using eigenstructure methods




surrogate data, eigenstructure methods, SNR


The problem of enhancing the effectiveness of spectral analysis of signals observed against the background of noise by the Root-MUSIC method has been considered using the surrogate data technology implemented by adapting the algorithm of phase randomization of the Fourier transform samples of the initial data in relation to the signal-to-noise ratio (SNR). The proposed variant of the surrogate data technology was shown to be effective at low values of SNR and a small number of samples. At large values of SNR an additive variant of the surrogate data technology actually does not cause an emergence of surrogate interference typical for nonadaptive variant. The proposed variant of the technology can be applied in combination with other methods of spectral analysis.


TREES, H.L.V. Optimum Array Processing. Part IV of Detection, Estimation and Modulation Theory. New York, Wiley-Interscience, 2002.

BRILLINGER, D.R. Time Series. Data Analysis and Theory. Holt, Rinehart and Winston, 1975.

JOLLIFFE, I.T. Principal Component Analysis. Springer, 2002, 487 p.

GIRKO, V.L. Spectral Theory of Random Matrices. Moscow: Nauka, 1988, 376 p. [in Russian].

LEKHOVYTSKIY, D.I. Statistical analysis of “superresolution” methods of direction-finding of noise radiation sources at the finite size of learning sample. Prikladnaya Radioelektronika, 2009, v.8, n.4, p.527-540.

VASYLYSHYN, V.I. Estimation of the number of signal harmonic components by using the surrogate data technology. Prikladnaya Radioelektronika, 2013, v.12, n.4, p.542-552.

ABRAMOVICH, Y.I. Regularized adaptive optimization method using the criterion of signal-to-noise ratio maximum. Radiotekh. Elektron., 1981, v.26, n.3, p.543-551.

GERSHMAN, ALEX B.; BÖHME, JOHANN F. A pseudo-noise approach to direction finding. Signal Processing, May 1998, v.71, n.1, p.1-13, DOI:

VASYLYSHYN, VOLODYMYR. Removing the outliers in root-MUSIC via pseudo-noise resampling and conventional beamformer. Signal Processing, Dec. 2013, v.93, n.12, p.3423-3429, DOI:

LIOU, CHENG-YUAN; LIOU, RUEY-MING. Spatial pseudorandom array processing. IEEE Trans. Signal Process., Sep. 1989, v.37, n.9, p.1445-1449, DOI:

THEILER, JAMES S.; EUBANK, STEPHEN; LONGTIN, ANDRE; GALDRIKIAN, BRYAN; FARMER, J. DOYNE. Testing for nonlinearity in time series: the method of surrogate data. Physica D, 1992, v.58, n.1-4, p.77-94, DOI:

DAHLHAUS, RAINER; KURTHS, JURGEN; MAASS, PETER; TIMMER, JENS. Mathematical Methods in Signal Processing and Digital Image Analysis. Berlin Heidelberg: Springer–Verlag, 2008, DOI:

BORGNAT, PIERRE; FLANDRIN, PATRICK. Stationarization via surrogates. J. Stat. Mech., 2009, p.1-14, DOI:

VASYLYSHYN, V.I. Adaptive correction of preliminary signal processing by using the surrogate data technology in problems of spectral analysis. Syst. Obrob. Inf., 2013, n.2, p.15-20.

KOSTENKO, P.Y.; VASYLYSHYN, V.I. Signal processing correction in spectral analysis using the surrogate autocovariance observation functions obtained by the ATS-algorithm. Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2014, v.57, n.6, p.3-12, [Radioelectron. Commun. Syst., 2014, v.57, n.6, p.235-243, DOI:].

KOSTENKO, P.Y.; VASYLYSHYN, V.I. Enhancing the spectral analysis efficiency at low signal-to-noise ratios using the technology of surrogate data without the segmentation of observation. Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2015, v.58, n.2, p.36-47, [Radioelectron. Commun. Syst., 2015, v.58, n.2, p.75-84, DOI:].

GOROKHOV, A.Y.; ABRAMOVICH, Y.I.; BOHME, J.F. Unified analysis of DOA estimation algorithms for covariance matrix transforms. Signal Processing, Nov. 1996, v.55, n.1, p.107-115, DOI:

VASYLYSHYN, V.I. Analysis of the procedure error of the spectral analysis using the surrogate data technology. Syst. Obrob. Inf., 2014, n.1, p.5-9.

GERSHMAN, A.B.; ERMOLAEV, V.T. Analysis of the spatial smoothing of correlation matrix in problems of angular resolution of correlated signals. Izv. Vyssh. Uchebn. Zaved., Radioelektron., 1990, v.33, n.9, p.20-24 [Radioelectron. Commun. Syst., 1990, v.33, n.9, p.18].

LEKHOVYTSKIY, D.I.; RAKOV, I.D. The efficiency of adaptive spatial processing of signals in the process of time correlation of learning samples. Radiotekhnika, 1986, n.9, p.60-63.

VASYLYSHYN, V.I. Preliminary signal processing using the SSA method in spectral analysis problems. Prikladnaya Radioelektronika, 2014, v.13, n.1, p.42-49.

DA COSTA, J.P.C.L.; HAARDT, M.; ROMER, F.; DEL GALDO, G. Enhanced model order estimation using higher-order arrays. Proc. of 41st Asilomar Int.Conf. on Signals, Systems, and Computers, ACSSC 2007, 4-7 Nov. 2007, Pasific Grove, CA. IEEE, 2007, p.412-416, DOI:

NADAKUDITI, R.R.; EDELMAN, A. Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples. IEEE Trans. Signal Process., July 2008, v.56, n.7, p.2625-2638, DOI:

VASYLYSHYN, V.I. Beamspace root estimator bank for DOA estimation with an improved threshold performance. Proc. of IEEE Int. Conf. ICATT, 16-20 Sept. 2013, Odessa, Ukraine. IEEE, 2013, p.280-282.

VASYLYSHYN, V.I. Enhancing the efficiency of spectral analysis by the ESPRIT method using the surrogate data technology. Prikladnaya Radioelektronika, 2013, v.12, n.3, p.406-412.





Research Articles