Natural oscillations providing 90° polarization plane rotation by planar chiral double-slot irises

Authors

  • A. A. Kirilenko Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-8717-5334
  • N. G. Kolmakova St. Petersburg State Polytechnical University; Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Russian Federation
  • Andrey O. Perov Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0003-2847-8164
  • S. A. Prikolotin Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine
  • V. N. Derkach Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.3103/S0735272714120012

Keywords:

dihedral symmetry, eigenoscillations, optical activity, planar chiral iris, polarization rotation

Abstract

The common origin of the “enhanced transmission” through small holes and polarization plane rotation (“optical activity”) resonances peculiar for a pair of conjugated planar chiral irises is demonstrated. The eigenoscillation spectra are studied extensively from the “aperture” eigenoscillations of plane junctions responsible for the “enhanced transmission” through the planar chiral iris up to the eigenoscillations of “dihedral” symmetry formed in a composite double slot planar chiral iris. Their excitation results in polarization plane rotation of the dominant mode in a square waveguide. A new compact unit for TE01 to TE10 conversion operating within 5–10% frequency band is proposed and validated experimentally. All conclusions are valid for various types of metasurfaces based on the “fish-net” gratings.

References

MASLOVKI, S.I.; MORITS, D.K.; TRETYAKOV, S.A. Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles. J. Opt. A: Pure Appl. Opt., Jul. 2009, v.11, n.7, p.074004-7, DOI: http://dx.doi.org/10.1088/1464-4258/11/7/074004.

PLUM, E.; ZHOU, J.; DONG, J.; FEDOTOV, V.A.; KOSCHNY, T.; SOUKOULIS, C.M.; ZHELUDEV, N.I. Metamaterial with negative index due to chirality. Phys. Rev. B, Jan. 2009, v.79, p.035407-6, DOI: http://dx.doi.org/10.1103/PhysRevB.79.035407.

LI, ZHAOFENG; CAGLAYAN, HUMEYRA; COLAK, EVRIM; ZHOU, JIANGFENG; SOUKOULIS, COSTAS M.; OZBAY, EKMEL. Coupling effect between two adjacent chiral structure layers. Optics Express, 2010, v.18, n.6, p.5375-5383, DOI: http://dx.doi.org/10.1364/OE.18.005375.

ZHAO, R.; ZHANG, L.; ZHOU, J.; KOSCHNY, Th.; SOUKOULIS, C.M. Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index. Phys. Rev. B, 2011, v.83, p.035105-4, DOI: http://dx.doi.org/10.1103/PhysRevB.83.035105.

ZARIFI, D.; SOLEIMANI, M.; NAYYERI, V. Dual- and multiband chiral metamaterial structures with strong optical activity and negative refraction index. IEEE Antennas Wireless Propag. Lett., 2012, v.11, p.334-337, DOI: http://dx.doi.org/10.1109/LAWP.2012.2191261.

LI, ZHAOFENG; ZHAO, RONGKUO; KOSCHNY, THOMAS; KAFESAKI, MARIA; ALICI, KAMIL BORATAY; COLAK, EVRIM; CAGLAYAN, HUMEYRA; OZBAY, EKMEL; SOUKOULIS, C.M. Chiral metamaterials with negative refractive index based on four “U” split ring resonators. Appl. Phys. Lett., 2010, v.97, n.8, p.081901-3, DOI: http://dx.doi.org/10.1063/1.3457448.

NIEMI, T.; KARILAINEN, A.O.; TRETYAKOV, S.A. Synthesis of polarization transformers. IEEE Trans. Antennas Propag., June 2013, v.61, n.6, p.3102-3111, DOI: http://dx.doi.org/10.1109/TAP.2013.2252136.

ZHANG, YONG-LIANG; JIN, WEI; DONG, XIAN-ZI; ZHAO, ZHEN-SHENG; DUAN, XUAN-MING. Asymmetric fishnet metamaterials with strong optical activity. Optics Express, 2012, v.20, n.10, p.10776-10787, DOI: http://dx.doi.org/10.1364/OE.20.010776.

KIRILENKO, A.A.; KOLMAKOVA, N.G.; PRIKOLOTIN, S.A. Ultra-compact 90° twist based on a pair of two closely placed flat chiral irises. Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2012, v.55, n.4, p.31-35, http://radio.kpi.ua/article/view/S002134701204005X; Radioelectron. Commun. Syst., 2012, v.55, n.4, p.175-177, http://radioelektronika.org/article/view/S073527271204005X, DOI: http://dx.doi.org/10.3103/S073527271204005X.

KOLMAKOVA, N.; PRIKOLOTIN, S.; KIRILENKO, A.; PEROV, A. Simple example of polarization plane rotation by the fringing fields interaction. Proc. of European Microwave Conf., EuMC, 6-10 Oct. 2013, Nuremberg. IEEE, 2013, p.936-938, INSPEC: 13999754.

PEROV, A.O.; KIRILENKO, A.A.; KOLMAKOVA, N.G.; PRIKOLOTIN, S.A.; SENKEVICH, S.L. Aperture oscillations, enhanced transmission and polarization plane rotation in the light of natural oscillations spectrum. Proc. of IX Int. Conf. on Antenna Theory and Techniques, ICATT, 16-20 Sept. 2013, Odessa, Ukraine (IEEE, 2013), p.467-469, DOI: http://dx.doi.org/10.1109/ICATT.2013.6650814.

DERKACH, V.; KIRILENKO, A.; SALOGUB, A.; PRIKOLOTIN, S.; KOLMAKOVA, N.; OSTRIZHNYI, Y. Gigant optical activity in artificial plane-chiral structures. Proc. of Int. Kharkov Symp. on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, MSMW, 23–28 June 2013, Kharkiv, Ukraine. IEEE, 2013, p.436-438, DOI: http://dx.doi.org/10.1109/MSMW.2013.6622098.

KIRILENKO, A.A.; PEROV, A.O.; KOLMAKOVA-DON, N.G.; PRIKOLOTIN, S.A. Eigen-oscillations of composite double-slot iris in a square waveguide and manifestation of enhanced transmission and “optical activity”. Proc. of Int. Kharkov Symp. on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, MSMW, 23-28 June 2013, Kharkiv, Ukraine. IEEE, 2013, p.231-233, DOI: http://dx.doi.org/10.1109/MSMW.2013.6622009.

KIRILENKO, ANATOLIY A.; PEROV, A.O. On the common nature of the enhanced and resonance transmission through the periodical set of holes. IEEE Trans. Antennas Propag., Oct. 2008, v.56, n.10, p.3210-3216, DOI: http://dx.doi.org/10.1109/TAP.2008.929437.

MEDINA, F.; MESA, F.; MARQUES, R. Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective. IEEE Trans. Microwave Theory Tech., Dec. 2008, v.56, n.12, p.3108-3120, DOI: http://dx.doi.org/10.1109/TMTT.2008.2007343.

CORNWELL, J.F. Group Theory in Physics: an Introduction. Academic Press, 1997.

Published

2014-12-13

Issue

Section

Research Articles