Quasi-planar K-band push-push low phase noise oscillator stabilized by cavity resonator

Authors

DOI:

https://doi.org/10.3103/S0735272714090052

Keywords:

low phase noise oscillator, K-band push-push oscillator, oscillator based on a cavity resonator, oscillator based on silicon-germanium bipolar transistors

Abstract

The results of developing a K-band (24 GHz) push-push low phase noise transistor oscillator have been presented. This oscillator is stabilized by a rectangular resonant metallic cavity. The power level of output signal is –9.5 dBm, the fundamental harmonic suppression is 21 dB. Single sideband (SSB) phase noise spectral density of –98 dBc/Hz at 10 kHz and –128 dBc/Hz at 100 kHz offset from the carrier frequency is at the level of dielectric resonator oscillators (DRO) scaled to the same frequency. The oscillator features a compact size, low cost quazi-planar design and it is built using commercially available off the shelf parts.

References

XIA, QING; ZONGXI, TANG; ZHANG, BIAO. Design of a 17.4GHz push-push dielectric resonator oscillator. Proc. of Int. Conf. on Microwave and Millimeter Wave Technology, ICMMT, 8–11 May 2010, Chengdu. IEEE, 2010, p.532-535, DOI: http://dx.doi.org/10.1109/ICMMT.2010.5525221.

XIAO, H.; TANAKA, T.; AIKAWA, M. A Ka-band quadruple-push oscillator. IEEE MTT-S Int. Microwave Symp. Dig., v.2, p.889-892, 2003, DOI: http://dx.doi.org/10.1109/MWSYM.2003.1212512.

SINNESBICHLER, F.X. Hybrid millimeter-wave push-push oscillators using silicon-germanium HBTs. IEEE Trans. Microwave Theory Tech., v.51, n.2, p.422-430, Feb. 2003, DOI: http://dx.doi.org/10.1109/TMTT.2002.807836.

YEN, SHIH-CHIEH; CHU, TAH-HSIUNG. An Nth-harmonic oscillator using an N-push coupled oscillator array with voltage-clamping circuits. IEEE MTT-S Int. Microwave Symp. Dig., v.3, p.2169-2172, 2003, DOI: http://dx.doi.org/10.1109/MWSYM.2003.1210593.

CHANG, HENG-CHIA; CAO, XUDONG; MISHRA, UMESH K.; YORK, R.A. Phase noise in coupled oscillators: theory and experiment. IEEE Trans. Microwave Theory Tech., v.45, n.5, p.604-615, May 1997, DOI: http://dx.doi.org/10.1109/22.575575.

KOBAYASHI, Y.; MINEGISHI, M. Precise design of a bandpass filter using high-Q dielectric ring resonators. IEEE Trans. Microwave Theory Tech., v.35, n.12, p.1156-1160, Dec. 1987, DOI: http://dx.doi.org/10.1109/TMTT.1987.1133831.

ZHOU, LIANG; YIN, WEN-YAN; MAO, JUN-FA. Substrate integrated high-Q dielectric resonators for low phase noise oscillator. Proc. of IEEE Symp. on Electrical Design of Advanced Packaging & Systems, EDAPS, 2–4 Dec. 2009, Shatin, Hong Kong. IEEE, 2009, p.1-4, DOI: http://dx.doi.org/10.1109/EDAPS.2009.5403983.

MAREE, J.; DE SWARDT, J.B.; VAN DER WALT, P.W. Low phase noise cylindrical cavity oscillator. Proc. of IEEE Conf. AFRICON, 9–12 Sept. 2013, Pointe-Aux-Piments. IEEE, 2013, p.1-5, DOI: http://dx.doi.org/10.1109/AFRCON.2013.6757867.

POZAR, D.M. Microwave Engineering, 3rd ed. John Wiley & Sons Inc., 2005, 281 p.

EVERARD, J.K.A. A review of low noise oscillator. Theory and design. Proc. of IEEE Int. Symp. on Frequency Control, 28–30 May 1997, Orlando, FL. IEEE, 1997, p.909-918, DOI: http://dx.doi.org/10.1109/FREQ.1997.639208.

CRESSLER, J.D. SiGe HBT technology: A new contender for Si-based RF and microwave circuit applications. IEEE Trans. Microwave Theory Tech., v.46, n.5, p.572-589, May 1998, DOI: http://dx.doi.org/10.1109/22.668665.

RUSSER, P. Si and SiGe millimeter-wave integrated circuits. IEEE Trans. Microwave Theory Tech., v.46, n.5, p.590-603, May 1998, DOI: http://dx.doi.org/10.1109/22.668668.

Published

2014-09-12

Issue

Section

Research Articles