Component correlation analysis of vectorial periodically non-stationary random processes
DOI:
https://doi.org/10.3103/S0735272714090039Keywords:
vectorial periodically non-stationary random processes, tensor-function, estimation, variance, invariantsAbstract
Properties of linear and quadratic invariants of correlation tensor-function of vectorial periodically non-stationary random processes are considered. We analyze the properties of their estimations, given in the form of trigonometric polynomials, whose Fourier coefficients can be obtained using averaging on time of realization parts. Formula for estimations bias and variance, which allow to calculate systematic and mean square errors of processing in dependence on processing parameters and process parameters, are derived.References
ROZHKOV, V.A. The Methods of Probability Analysis of Oceanological Processes. Leningrad: Gidrometeoizdat, 1974 [in Russian] 280 p.
BELYSHEV, A.P.; KLEVANTSOV, Y.P.; ROZHKOV, V.A. Probability Analysis of Sea Currents. Leningrad: Gidrometeoizdat, 1983 [in Russian] 264 p.
DRAGAN, Y.P.; ROZHKOV, V.A.; YAVORSKYJ, I.N. Methods of Probability Analysis of Oceanological Processes Rhythmic. Leningrad: Gidrometeoizdat, 1987 [in Russian] 320 p.
KOCHIN, V.E. Vectorial Computation and Basics of Tensor Calculus. Moscow: Izdat. AN SSSR, 1961 [in Russian] 426 p.
YAVORSKYJ, I.N. Statistical analysis of vectorial periodical non-stationery random processes. Otbor i Peredacha Informatsii, n.76, p.3-12, 1987.
YAVORSKYJ, I.N.; KRAVETS, I.B.; MATSKO, I.I.; YUZEFOVYCH, R.M. Invariant correlation analysis of vectorial periodically correlated random processes. Vidbir i Obrobka Informatsii, n.35, p.22-31, 2011.
YAVORSKYJ, I.N.; YUZEFOVYCH, R.M.; MATSKO, I.I.; SHEVCHIK, V.B. Estimation of correlation invariants of periodically non-stationery vibration processes. Vidbir i Obrobka Informatsii, n.39, p.15-23, 2013.
DZHALA, R.M. Electromagnetic Diagnostic and Control of Pipeline Corrosion. Mechanics of Destroy and Materials Hardness. HandBook. Vol. 5: Nondestructive Test and Technical Diagnosis. Lviv: FMI NANU, 2001 [in Ukrainian, ed. by Z. T. Nazarchuk].
ISAYEV, I.Y.; NICHOGA, V.O.; TROKHIM, G.R.; YAVORSKYJ, I.N. Application of methods of the theory of periodically correlated random processes for detection of railway lines fails at the beginning stage. Informatsiino-Keruyuchi Systemy na Zaliznychnomu Transporti, n.4-5, p.110-113, 2002.
NICHOGA, V.O.; DUB, P.B. Specificities of application of multi-channel multi-component defectoscopy for diagnosis of railway lines with magnetic methods. in Proc. of XVI Int. Sci.-Tech. Conf. LEOTEST-2011, 21–26 Feb. 2011, Slavske, Ukraine, 2011, p.131-133.
MILLER, S.E.; KAMINOV, J.P. Optical Fiber Telecommunication. New York: Academic Press, 1988.
MAJEWSKI, A. Teoria i Projectowanie Swiatlowodow. Warszawa: Wydawnictwo Naukowo-techniczne, 1991, 248 p.
JAVORSKYJ, I.; ISAYEV, I.; ZAKRZEWSKI, Z.; BROOKS, S.P. Coherent covariance analysis of periodically correlated random processes. Signal Processing, v.87, n.1, p.13-32, 2007, DOI: http://dx.doi.org/10.1016/j.sigpro.2006.04.002.
YAVORSKYJ, I.N.; YUZEFOVYCH, ROMAN; MATSKO, I.Y.; ZAKRZEWSKI, ZBIGNIEW. Coherent estimates of correlation characteristics of interconnected periodically correlated random processes. Izv. Vyssh. Uchebn. Zaved., Radioelektron., v.55, n.9, p.26-36, 2012, http://radioelektronika.org/article/view/S0735272712090038 [in Russian]; Radioelectron. Commun. Syst., v.50, n.9, p.405-417, 2012, DOI: http://dx.doi.org/10.3103/S0735272712090038.
JAVORSKYJ, I.; ISAYEV, I.; MAJEWSKI, J.; YUZEFOVYCH, R. Component covariance analysis for periodically correlated random processes. Signal Processing, v.90, n.4, p.1083-1102, 2010, DOI: http://dx.doi.org/10.1016/j.sigpro.2009.07.031.